Damp-heat instability and mitigation of ZnO-based thin films for CuInGaSe2 solar cells

F. Pern, S. Glick, R. Sundaramoorthy, B. To, X. Li, C. Dehart, Stephen Glynn, T. Gennett, R. Noufi, T. Gessert
{"title":"Damp-heat instability and mitigation of ZnO-based thin films for CuInGaSe2 solar cells","authors":"F. Pern, S. Glick, R. Sundaramoorthy, B. To, X. Li, C. Dehart, Stephen Glynn, T. Gennett, R. Noufi, T. Gessert","doi":"10.1109/PVSC.2010.5614116","DOIUrl":null,"url":null,"abstract":"From our investigation of damp heat (DH)-induced degradation of the main component materials and complete CIGS devices in recent years, this paper summarizes the results on the (1) DH stability of several transparent conducting oxides deposited on glass substrates, including ZnO-based thin films, Sn-doped In2O3 (ITO), and InZnO, and (2) effectiveness of physical and chemical mitigations for ZnO. The electrical results showed that the DH-induced degradation rates of i-ZnO, AZO, their bilayer (BZO), and Al-doped Zn1−xMgxO are significantly greater than those of ITO and InZnO. Thicker AZO films are more stable than thinner ones. Structurally, upon DH exposures, the hexagonal ZnO-based thin films are transformed into highly resistive Zn(OH)2 and/or cubic ZnO with increased transmittance and substantial morphological changes. In the physical mitigation approach, plasma-enhanced chemical vapor-deposited SiOxNy and sputter-deposited InZnO are employed separately as moisture barriers to protect the underlying i-ZnO, AZO, and/or BZO with good results. However, the SiOxNy films required working with chemical treatments to improve adhesion to the BZO surfaces. In the chemical mitigation method, simple wet-solution treatments using special formulations are found effective to protect BZO from DH attack.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"29 1","pages":"001166-001171"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

From our investigation of damp heat (DH)-induced degradation of the main component materials and complete CIGS devices in recent years, this paper summarizes the results on the (1) DH stability of several transparent conducting oxides deposited on glass substrates, including ZnO-based thin films, Sn-doped In2O3 (ITO), and InZnO, and (2) effectiveness of physical and chemical mitigations for ZnO. The electrical results showed that the DH-induced degradation rates of i-ZnO, AZO, their bilayer (BZO), and Al-doped Zn1−xMgxO are significantly greater than those of ITO and InZnO. Thicker AZO films are more stable than thinner ones. Structurally, upon DH exposures, the hexagonal ZnO-based thin films are transformed into highly resistive Zn(OH)2 and/or cubic ZnO with increased transmittance and substantial morphological changes. In the physical mitigation approach, plasma-enhanced chemical vapor-deposited SiOxNy and sputter-deposited InZnO are employed separately as moisture barriers to protect the underlying i-ZnO, AZO, and/or BZO with good results. However, the SiOxNy films required working with chemical treatments to improve adhesion to the BZO surfaces. In the chemical mitigation method, simple wet-solution treatments using special formulations are found effective to protect BZO from DH attack.
CuInGaSe2太阳能电池用zno基薄膜的湿热不稳定性及抑制
本文通过对近年来主要组件材料和完整CIGS器件的湿热降解研究,总结了(1)沉积在玻璃衬底上的几种透明导电氧化物(包括ZnO基薄膜、锡掺杂In2O3 (ITO)和InZnO)的湿热稳定性以及(2)ZnO的物理和化学缓蚀剂的有效性。电学结果表明,dh诱导的i-ZnO、AZO及其双分子层(BZO)和al掺杂Zn1−xMgxO的降解率显著高于ITO和InZnO。较厚的AZO膜比较薄的AZO膜更稳定。在结构上,在DH照射下,六方ZnO基薄膜转变为高电阻Zn(OH)2和/或立方ZnO,透光率增加,形态发生显著变化。在物理减缓方法中,等离子体增强的化学气相沉积SiOxNy和溅射沉积InZnO分别作为水分屏障来保护底层的i-ZnO, AZO和/或BZO,效果良好。然而,SiOxNy薄膜需要通过化学处理来提高与BZO表面的附着力。在化学缓解方法中,使用特殊配方的简单湿溶处理可以有效地保护BZO免受DH攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信