{"title":"Plasmonic Scattering and Coupling Effects of Indium Nanoparticles Sheets Embedded in SiO2 AR-Coating on Performance Enhancement of Silicon Solar Cells","authors":"W. Ho, Hsi-Wen Hsu, Hao-Yu Yang, Jheng-Jie Liu, Yu-Tsen Tsai, Wei-chih Chiu","doi":"10.1109/PVSC45281.2020.9300500","DOIUrl":null,"url":null,"abstract":"In this work, performances of silicon solar cells enhancing by plasmonic scattering and coupling of two-dimensional (2-D) indium nanoparticles (In-NPs) sheets (1-3 layers) embedded in SiO2 antireflective coating (ARC) were demonstrated. Raman and absorbance measurements were examined the plasmonic scattering and coupling effects of 2-D In-NPs sheets embedded in SiO2 layer. Optical reflectance and external quantum efficiency were used to characterize the benefit of plasmonic ARC due to with 2-D In-NPs sheets embedded in SiO2. Photovoltaic current density-voltage measurements under AM 1.5G illumination were used to confirm the enhancement of short-circuit current density and conversion efficiency of the silicon solar cells coated with plasmonic ARC which was depended on In-NPs sheets number. Impressive efficiency enhancements of 39.57%, 38.59%, 34.27% for the cells with 3-, 2-, 1-In NPs sheets embedded in SiO2 layer and of 27.13% for the cell with a SiO2 layer without In-NPs sheet were obtained, respectively, compared to the reference cell.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"27 1","pages":"0231-0233"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, performances of silicon solar cells enhancing by plasmonic scattering and coupling of two-dimensional (2-D) indium nanoparticles (In-NPs) sheets (1-3 layers) embedded in SiO2 antireflective coating (ARC) were demonstrated. Raman and absorbance measurements were examined the plasmonic scattering and coupling effects of 2-D In-NPs sheets embedded in SiO2 layer. Optical reflectance and external quantum efficiency were used to characterize the benefit of plasmonic ARC due to with 2-D In-NPs sheets embedded in SiO2. Photovoltaic current density-voltage measurements under AM 1.5G illumination were used to confirm the enhancement of short-circuit current density and conversion efficiency of the silicon solar cells coated with plasmonic ARC which was depended on In-NPs sheets number. Impressive efficiency enhancements of 39.57%, 38.59%, 34.27% for the cells with 3-, 2-, 1-In NPs sheets embedded in SiO2 layer and of 27.13% for the cell with a SiO2 layer without In-NPs sheet were obtained, respectively, compared to the reference cell.