Investigation of Groundwater In-rush Zone using Petrophysical Logs and Short-offset Transient Electromagnetic (SOTEM) Data

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
Muhammad Younis Khan, G. Xue, Weiying Chen, C. Boateng
{"title":"Investigation of Groundwater In-rush Zone using Petrophysical Logs and Short-offset Transient Electromagnetic (SOTEM) Data","authors":"Muhammad Younis Khan, G. Xue, Weiying Chen, C. Boateng","doi":"10.32389/jeeg18-111","DOIUrl":null,"url":null,"abstract":"The water burst from the Ordovician limestone underlain by the Permo-Carboniferous coal seams have potential to trigger coalmine hazards in Northern China. Therefore, it is crucial to identify and accurately map the water enrichment zones and delineate coal seams using an integrated approach based on surface TEM and subsurface wireline log information to avoid water-inrush hazard and ensure safe production of coal. We inverted surface based TEM data using 1-D Occam inversion to identify the conductive anomaly and then further quantified the zone of interest by gamma and resistivity logs. 1-D Occam inversion results show conductive zone around 370 m while higher resistivity and lower gamma ray log signatures were observed against coal seams. Groundwater inrush zone falls within the mid-range gamma ray and resistivity interval as shown on the petrophysical logs. The distinct log signatures (low gamma-ray and high resistivity values) clearly indicated coal seams at depth of 410 and 470 m and subsequently the log trends were used to distinguish between coal units and more permeable sands. The magnitude and the variability of these parameters in the borehole are attributed to the subsurface stratigraphic heterogeneity. They can be key clues for interpretation of depositional facies of coal-bearing sequence and may also be used as a constraint in characterization of groundwater enrichment zone.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"31 1","pages":"433-437"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg18-111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 7

Abstract

The water burst from the Ordovician limestone underlain by the Permo-Carboniferous coal seams have potential to trigger coalmine hazards in Northern China. Therefore, it is crucial to identify and accurately map the water enrichment zones and delineate coal seams using an integrated approach based on surface TEM and subsurface wireline log information to avoid water-inrush hazard and ensure safe production of coal. We inverted surface based TEM data using 1-D Occam inversion to identify the conductive anomaly and then further quantified the zone of interest by gamma and resistivity logs. 1-D Occam inversion results show conductive zone around 370 m while higher resistivity and lower gamma ray log signatures were observed against coal seams. Groundwater inrush zone falls within the mid-range gamma ray and resistivity interval as shown on the petrophysical logs. The distinct log signatures (low gamma-ray and high resistivity values) clearly indicated coal seams at depth of 410 and 470 m and subsequently the log trends were used to distinguish between coal units and more permeable sands. The magnitude and the variability of these parameters in the borehole are attributed to the subsurface stratigraphic heterogeneity. They can be key clues for interpretation of depositional facies of coal-bearing sequence and may also be used as a constraint in characterization of groundwater enrichment zone.
利用岩石物理测井和短偏移瞬变电磁(SOTEM)资料研究地下水突水带
在华北地区,二叠石炭系煤层下伏的奥陶系灰岩突水可能引发煤矿灾害。因此,利用地面瞬变电磁法和地下电缆测井信息相结合的方法,识别和准确圈定富水带,圈定煤层,对于避免突水灾害,确保煤炭安全生产至关重要。我们利用1-D Occam反演方法反演了基于地表的TEM数据,以识别导电异常,然后通过伽马和电阻率测井进一步量化感兴趣的区域。一维Occam反演结果显示,370 m左右为导电带,在煤层上观察到高电阻率和低伽马测井特征。岩石物理测井显示,地下水突水带位于伽马和电阻率区间的中程范围内。不同的测井特征(低伽马值和高电阻率值)清楚地表明煤层深度为410和470 m,随后利用测井趋势来区分煤单元和更具渗透性的砂岩。这些参数在井内的大小和变异性归因于地下地层的非均质性。它们可以作为解释含煤层序沉积相的关键线索,也可以作为表征地下水富集带的约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信