Optimality, duality and saddle point criteria for a robust fractional interval-valued optimization problem with uncertain inequality constraints via convexificators

K. Kummari, Rekha R. Jaichander, I. Ahmad
{"title":"Optimality, duality and saddle point criteria for a robust fractional interval-valued optimization problem with uncertain inequality constraints via convexificators","authors":"K. Kummari, Rekha R. Jaichander, I. Ahmad","doi":"10.1051/ro/2023070","DOIUrl":null,"url":null,"abstract":"This article focuses on optimality conditions for a robust\nfractional interval-valued optimization problem with uncertain inequality\nconstraints (RNFIVP) based on convexificators. Using the tools\nof convexity, an example of sufficient optimality conditions is demonstrated.\nRobust parametric duality for (RNFIVP) is formulated and\nutilizing the concept of convexity, usual duality results between the\nprimal and dual problems are investigated. Further, the equivalence\nbetween the saddle point criteria of a Lagrangian type function and a\nrobust LU-optimal solution for (RNFIVP) with convexity is also examined.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"24 1","pages":"1397-1416"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on optimality conditions for a robust fractional interval-valued optimization problem with uncertain inequality constraints (RNFIVP) based on convexificators. Using the tools of convexity, an example of sufficient optimality conditions is demonstrated. Robust parametric duality for (RNFIVP) is formulated and utilizing the concept of convexity, usual duality results between the primal and dual problems are investigated. Further, the equivalence between the saddle point criteria of a Lagrangian type function and a robust LU-optimal solution for (RNFIVP) with convexity is also examined.
具有不确定不等式约束的鲁棒分数阶区间值优化问题的最优性、对偶性和鞍点准则
本文研究了一类基于凸化算子的具有不确定不等式约束的鲁棒分数阶区间值优化问题的最优性条件。利用凸性工具,给出了一个充分最优性条件的例子。建立了RNFIVP的鲁棒参数对偶性,并利用凸性的概念,研究了原问题和对偶问题之间的对偶结果。进一步研究了拉格朗日型函数的鞍点准则与具有凸性的(RNFIVP)的鲁棒最优解之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信