{"title":"On BiHom-L-R Smash Products","authors":"Jia-feng Lü, Panpan Wang, Ling Liu","doi":"10.1142/s1005386723000202","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a BiHom-Hopf algebra and [Formula: see text] be an [Formula: see text]-BiHom-bimodule algebra, where the maps [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are bijective. We first prove the Maschke-type theorem for the BiHom-L-R smash product over a finite-dimensional semisimple BiHom-Hopf algebra. Next we give a Morita context between the BiHom-subalgebra [Formula: see text] and the BiHom-L-R smash product [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"9 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000202","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] be a BiHom-Hopf algebra and [Formula: see text] be an [Formula: see text]-BiHom-bimodule algebra, where the maps [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are bijective. We first prove the Maschke-type theorem for the BiHom-L-R smash product over a finite-dimensional semisimple BiHom-Hopf algebra. Next we give a Morita context between the BiHom-subalgebra [Formula: see text] and the BiHom-L-R smash product [Formula: see text].
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.