VIBRATION ENERGY HARVESTING TECHNIQUE: A COMPREHENSIVE REVIEW

Nik Fakhri Nek Daud, Ruzlaini Ghoni
{"title":"VIBRATION ENERGY HARVESTING TECHNIQUE: A COMPREHENSIVE REVIEW","authors":"Nik Fakhri Nek Daud, Ruzlaini Ghoni","doi":"10.26480/gwk.02.2020.46.48","DOIUrl":null,"url":null,"abstract":"In order to minimize the requirement of external power source and maintenance for electric devices such as wireless sensor networks, the energy harvesting technique based on vibrations has been a dynamic field of studying interest over past years. Researchers have concentrated on developing efficient energy harvesters by adopting new materials and optimizing the harvesting devices. One important limitation of existing energy harvesting techniques is that the power output performance is seriously subject to the resonant frequencies of ambient vibrations, which are often random and broadband. This paper reviews important vibration-to-electricity conversion mechanisms, including theory, modelling methods and the realizations of the piezoelectric, electromagnetic and electrostatic approaches. Different types of energy harvesters that have been designed with nonlinear characteristics are also reviewed. As one of important factors to estimate the power output performance, the energy conversion efficiency of different conversion mechanisms is also summarized. Finally, the challenging issues based on the existing methods and future requirement of energy harvesting are also discussed.","PeriodicalId":32518,"journal":{"name":"Engineering Heritage Journal","volume":"360 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Heritage Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/gwk.02.2020.46.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to minimize the requirement of external power source and maintenance for electric devices such as wireless sensor networks, the energy harvesting technique based on vibrations has been a dynamic field of studying interest over past years. Researchers have concentrated on developing efficient energy harvesters by adopting new materials and optimizing the harvesting devices. One important limitation of existing energy harvesting techniques is that the power output performance is seriously subject to the resonant frequencies of ambient vibrations, which are often random and broadband. This paper reviews important vibration-to-electricity conversion mechanisms, including theory, modelling methods and the realizations of the piezoelectric, electromagnetic and electrostatic approaches. Different types of energy harvesters that have been designed with nonlinear characteristics are also reviewed. As one of important factors to estimate the power output performance, the energy conversion efficiency of different conversion mechanisms is also summarized. Finally, the challenging issues based on the existing methods and future requirement of energy harvesting are also discussed.
振动能量收集技术综述
为了减少无线传感器网络等电子设备对外部电源的需求和维护,基于振动的能量收集技术是近年来研究的热点。研究人员一直致力于通过采用新材料和优化收集装置来开发高效的能量收集器。现有能量收集技术的一个重要限制是,功率输出性能严重受到环境振动的谐振频率的影响,这些频率通常是随机的和宽带的。本文综述了重要的振动-电转换机制,包括理论、建模方法以及压电、电磁和静电方法的实现。并对不同类型的具有非线性特性的能量采集器进行了综述。作为评估功率输出性能的重要因素之一,总结了不同转换机制的能量转换效率。最后,讨论了基于现有方法和未来需求的能量收集所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信