{"title":"Doubly-adaptive artificial compression methods for incompressible flow","authors":"W. Layton, Michael McLaughlin","doi":"10.1515/jnma-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract This report presents adaptive artificial compression methods in which the time-step and artificial compression parameter ε are independently adapted. The resulting algorithms are supported by analysis and numerical tests. The first and second-order methods are embedded. As a result, the computational, cognitive, and space complexities of the adaptive ε, k algorithms are negligibly greater than that of the simplest, first-order, constant ε, constant k artificial compression method.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17
Abstract
Abstract This report presents adaptive artificial compression methods in which the time-step and artificial compression parameter ε are independently adapted. The resulting algorithms are supported by analysis and numerical tests. The first and second-order methods are embedded. As a result, the computational, cognitive, and space complexities of the adaptive ε, k algorithms are negligibly greater than that of the simplest, first-order, constant ε, constant k artificial compression method.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.