A. Dumitru, D. Toader, S. Crețoiu, D. Crețoiu, N. Suciu, B. Radu
{"title":"Alterations in Calcium Signaling Pathways in Breast Cancer","authors":"A. Dumitru, D. Toader, S. Crețoiu, D. Crețoiu, N. Suciu, B. Radu","doi":"10.5772/INTECHOPEN.80811","DOIUrl":null,"url":null,"abstract":"Breast cancer is the second most common cancer in women and the fifth cause contributing to death due to the cancer condition. It is essential to deeply understand the complex cellular mechanisms leading to this disease. There are multiple connections between calcium homeostasis alterations and breast cancer in the literature, but no consensus links the mechanism to the disease prognosis. Among the cells contributing to the breast cancer are the breast telocytes, which connect through gap junctions to other cells, including cancer cells and myoepithelial cells. Multiple proteins (i.e., voltage-gated calcium channels, transient receptor potential channels, STIM and Orai proteins, ether à go-go potassium channels, calcium-activated potassium channels, calcium-activated chloride channels, muscarinic acetylcholine receptors, etc.) coupled with calcium signaling pathways undergo functional and/or expression changes associated with breast cancer development and progression, and might represent promising pharmacological targets. Unraveling the mechanisms of altered calcium homeostasis in various breast cells due to the cancer condition might contribute to personalized therapeutic approaches.","PeriodicalId":9411,"journal":{"name":"Calcium and Signal Transduction","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcium and Signal Transduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Breast cancer is the second most common cancer in women and the fifth cause contributing to death due to the cancer condition. It is essential to deeply understand the complex cellular mechanisms leading to this disease. There are multiple connections between calcium homeostasis alterations and breast cancer in the literature, but no consensus links the mechanism to the disease prognosis. Among the cells contributing to the breast cancer are the breast telocytes, which connect through gap junctions to other cells, including cancer cells and myoepithelial cells. Multiple proteins (i.e., voltage-gated calcium channels, transient receptor potential channels, STIM and Orai proteins, ether à go-go potassium channels, calcium-activated potassium channels, calcium-activated chloride channels, muscarinic acetylcholine receptors, etc.) coupled with calcium signaling pathways undergo functional and/or expression changes associated with breast cancer development and progression, and might represent promising pharmacological targets. Unraveling the mechanisms of altered calcium homeostasis in various breast cells due to the cancer condition might contribute to personalized therapeutic approaches.