A New Strategy of Geometrical Biclustering for Microarray Data Analysis

Hongya Zhao, Alan Wee-Chung Liew, Hong Yan
{"title":"A New Strategy of Geometrical Biclustering for Microarray Data Analysis","authors":"Hongya Zhao, Alan Wee-Chung Liew, Hong Yan","doi":"10.1142/9781860947995_0008","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new biclustering algorithm to provide the geometrical interpretation of similar microarray gene expression profiles. Different from standard clustering analyses, biclustering methodology can perform simultaneous classification on the row and column dimensions of a data matrix. The main object of the strategy is to reveal the submatrix, in which a subset of genes exhibits a consistent pattern over a subset of conditions. However, the search for such subsets is a computationally complex task. We propose a new algorithm, based on the Hough transform in the column-pair space to perform pattern identification. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our simulation studies show that the method is robust to noise and computationally efficient. Furthermore, we have applied it to a large database of gene expression profiles of multiple human organs and the resulting biclusters show clear biological meanings.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"39 1","pages":"47-56"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we present a new biclustering algorithm to provide the geometrical interpretation of similar microarray gene expression profiles. Different from standard clustering analyses, biclustering methodology can perform simultaneous classification on the row and column dimensions of a data matrix. The main object of the strategy is to reveal the submatrix, in which a subset of genes exhibits a consistent pattern over a subset of conditions. However, the search for such subsets is a computationally complex task. We propose a new algorithm, based on the Hough transform in the column-pair space to perform pattern identification. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our simulation studies show that the method is robust to noise and computationally efficient. Furthermore, we have applied it to a large database of gene expression profiles of multiple human organs and the resulting biclusters show clear biological meanings.
微阵列数据分析的几何双聚类新策略
在本文中,我们提出了一种新的双聚类算法来提供相似微阵列基因表达谱的几何解释。与标准聚类分析不同,双聚类方法可以同时对数据矩阵的行维和列维进行分类。该策略的主要目的是揭示子矩阵,其中一组基因在一组条件下表现出一致的模式。然而,搜索这样的子集是一个计算复杂的任务。本文提出了一种基于列对空间中的Hough变换的模式识别算法。该算法特别适用于大规模微阵列数据的双聚类分析。仿真研究表明,该方法对噪声具有较强的鲁棒性和计算效率。此外,我们已将其应用于多个人体器官的基因表达谱的大型数据库,由此产生的双聚类显示出明确的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信