Yi Zhou, Xiaodong He, Lei Huang, Li Liu, Fan Zhu, Shanshan Cui, Ling Shao
{"title":"Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images","authors":"Yi Zhou, Xiaodong He, Lei Huang, Li Liu, Fan Zhu, Shanshan Cui, Ling Shao","doi":"10.1109/CVPR.2019.00218","DOIUrl":null,"url":null,"abstract":"Medical image analysis has two important research areas: disease grading and fine-grained lesion segmentation. Although the former problem often relies on the latter, the two are usually studied separately. Disease severity grading can be treated as a classification problem, which only requires image-level annotations, while the lesion segmentation requires stronger pixel-level annotations. However, pixel-wise data annotation for medical images is highly time-consuming and requires domain experts. In this paper, we propose a collaborative learning method to jointly improve the performance of disease grading and lesion segmentation by semi-supervised learning with an attention mechanism. Given a small set of pixel-level annotated data, a multi-lesion mask generation model first performs the traditional semantic segmentation task. Then, based on initially predicted lesion maps for large quantities of image-level annotated data, a lesion attentive disease grading model is designed to improve the severity classification accuracy. Meanwhile, the lesion attention model can refine the lesion maps using class-specific information to fine-tune the segmentation model in a semi-supervised manner. An adversarial architecture is also integrated for training. With extensive experiments on a representative medical problem called diabetic retinopathy (DR), we validate the effectiveness of our method and achieve consistent improvements over state-of-the-art methods on three public datasets.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"14 1","pages":"2074-2083"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 163
Abstract
Medical image analysis has two important research areas: disease grading and fine-grained lesion segmentation. Although the former problem often relies on the latter, the two are usually studied separately. Disease severity grading can be treated as a classification problem, which only requires image-level annotations, while the lesion segmentation requires stronger pixel-level annotations. However, pixel-wise data annotation for medical images is highly time-consuming and requires domain experts. In this paper, we propose a collaborative learning method to jointly improve the performance of disease grading and lesion segmentation by semi-supervised learning with an attention mechanism. Given a small set of pixel-level annotated data, a multi-lesion mask generation model first performs the traditional semantic segmentation task. Then, based on initially predicted lesion maps for large quantities of image-level annotated data, a lesion attentive disease grading model is designed to improve the severity classification accuracy. Meanwhile, the lesion attention model can refine the lesion maps using class-specific information to fine-tune the segmentation model in a semi-supervised manner. An adversarial architecture is also integrated for training. With extensive experiments on a representative medical problem called diabetic retinopathy (DR), we validate the effectiveness of our method and achieve consistent improvements over state-of-the-art methods on three public datasets.