P. K. Pattnaik, Sujogya Mishra, A. P. Baitharu, S. Jena
{"title":"Cu-kerosene and Al2O3-kerosene boundary layer nanofluid flow past a stretching/shrinking surface","authors":"P. K. Pattnaik, Sujogya Mishra, A. P. Baitharu, S. Jena","doi":"10.1177/23977914221103986","DOIUrl":null,"url":null,"abstract":"A mathematical discussion of two different classes of nanofluids, such as Copper (Cu)-Kerosene and Aluminum oxide (Al2O3)-Kerosene, over a stretching/shrinking surface, has been discussed in this manuscript. Here Kerosene based nanofluids carry Copper and Aluminum oxide as nanoparticles. The ODEs are obtained from basic equations by introducing the similarity approach. The respective coupled nonlinear ODEs are solved with the help of a suitable numerical technique named as Runge-Kutta fourth-order method. It is found that Al2O3-Kerosene possesses a slightly greater velocity than Cu-Kerosene, but a reverse effect is found in the case of temperature and nanofluids. The presence of volume concentration is important due to the presence of nanoparticles as nanofluids property depends on the physical properties of nanoparticles.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221103986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A mathematical discussion of two different classes of nanofluids, such as Copper (Cu)-Kerosene and Aluminum oxide (Al2O3)-Kerosene, over a stretching/shrinking surface, has been discussed in this manuscript. Here Kerosene based nanofluids carry Copper and Aluminum oxide as nanoparticles. The ODEs are obtained from basic equations by introducing the similarity approach. The respective coupled nonlinear ODEs are solved with the help of a suitable numerical technique named as Runge-Kutta fourth-order method. It is found that Al2O3-Kerosene possesses a slightly greater velocity than Cu-Kerosene, but a reverse effect is found in the case of temperature and nanofluids. The presence of volume concentration is important due to the presence of nanoparticles as nanofluids property depends on the physical properties of nanoparticles.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.