Selahattin Güzelküçük, I. Demir, Özer Sevim, I. Kalkan
{"title":"Mechanical properties and microstructure of cement multicomponent systems containing pozzolan materials under sulfate attack","authors":"Selahattin Güzelküçük, I. Demir, Özer Sevim, I. Kalkan","doi":"10.32047/cwb.2020.25.2.6","DOIUrl":null,"url":null,"abstract":"Sulfates are a significant chemical components that may lead to failures of cement concrete composites. The present study is dedicated to analyzing the effects of sulfate on the microstructure of cement composite mortars. For this purpose, cementing composite specimens were prepared with 20% pozzolan mixture [fly ash + granulated blastfurnace slag + bottom ash] by mass of cement, together with the reference additive-free specimen of cement concrete, without any mineral admixtures. These cementing composite mortar specimens were then treated for 2, 7, 28, 90, and 360 days in tap water and 10% sodium sulfate solution. The microstructure of the additive-free mortar and composite cement mortar, partially replaced with 20% pozzolan, was then investigated using a scanning electron microscope. The results showed that increasing curing time also increases the formation of C-S-H [calcium silicate hydrate] gel in the cement mortar, when the microstructural changes in the cement are explored in detail. Ettringite formation [3CaO·Al2O3·3CaSO4·32H2O] in the specimens cured in 10% Na2SO4 was also noticed, in the present experiments.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2020.25.2.6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Sulfates are a significant chemical components that may lead to failures of cement concrete composites. The present study is dedicated to analyzing the effects of sulfate on the microstructure of cement composite mortars. For this purpose, cementing composite specimens were prepared with 20% pozzolan mixture [fly ash + granulated blastfurnace slag + bottom ash] by mass of cement, together with the reference additive-free specimen of cement concrete, without any mineral admixtures. These cementing composite mortar specimens were then treated for 2, 7, 28, 90, and 360 days in tap water and 10% sodium sulfate solution. The microstructure of the additive-free mortar and composite cement mortar, partially replaced with 20% pozzolan, was then investigated using a scanning electron microscope. The results showed that increasing curing time also increases the formation of C-S-H [calcium silicate hydrate] gel in the cement mortar, when the microstructural changes in the cement are explored in detail. Ettringite formation [3CaO·Al2O3·3CaSO4·32H2O] in the specimens cured in 10% Na2SO4 was also noticed, in the present experiments.
Cement Wapno BetonCONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍:
The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete