Regularity of stable solutions to quasilinear elliptic equations on Riemannian models

IF 0.9 4区 数学 Q2 Mathematics
'O JoaoMarcosdo, R. Clemente
{"title":"Regularity of stable solutions to quasilinear elliptic equations on Riemannian models","authors":"'O JoaoMarcosdo, R. Clemente","doi":"10.5186/AASFM.2019.4448","DOIUrl":null,"url":null,"abstract":"We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobolev estimates for this class of solutions for equations involving the p-Laplace Beltrami operator and locally Lipschitz non-linearity. We emphasize that our results do not depend on the boundary conditions and the specific form of the non-linearities and metric. Moreover, as an application, we establish regularity of the extremal solutions for equations involving the p-Laplace Beltrami operator with zero Dirichlet boundary conditions.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4448","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobolev estimates for this class of solutions for equations involving the p-Laplace Beltrami operator and locally Lipschitz non-linearity. We emphasize that our results do not depend on the boundary conditions and the specific form of the non-linearities and metric. Moreover, as an application, we establish regularity of the extremal solutions for equations involving the p-Laplace Beltrami operator with zero Dirichlet boundary conditions.
黎曼模型拟线性椭圆方程稳定解的正则性
研究一类拟线性反应扩散方程在非齐次黎曼流形条件下的半稳定、径向对称和递减解的正则性。我们证明了这类包含p-Laplace Beltrami算子和局部Lipschitz非线性方程解的一致有界性、Lebesgue和Sobolev估计。我们强调,我们的结果不依赖于边界条件和特定形式的非线性和度量。此外,作为一个应用,我们建立了具有零Dirichlet边界条件的p-Laplace Beltrami算子方程的极值解的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信