A free monoid containing all strongly Bi-singular languages and non-primitive words

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chunhua Cao, Ling Li, Di Yang
{"title":"A free monoid containing all strongly Bi-singular languages and non-primitive words","authors":"Chunhua Cao, Ling Li, Di Yang","doi":"10.1080/23799927.2019.1587516","DOIUrl":null,"url":null,"abstract":"ABSTRACT Let , where , be the set of ith powers of primitive words. A language is called strongly bi-singular if the minimal-length words in it are neither prefixes nor suffixes of any other word in the language. Strongly bi-singular languages forms a free monoid with respect to the concatenation of languages. The main result of this paper is that if we start with the basis of this free monoid together with the languages for all , then the resulting family of languages is a code. So we find a free monoid which properly contains the free monoid of all strongly bi-singular languages.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":"141 1","pages":"57 - 66"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2019.1587516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Let , where , be the set of ith powers of primitive words. A language is called strongly bi-singular if the minimal-length words in it are neither prefixes nor suffixes of any other word in the language. Strongly bi-singular languages forms a free monoid with respect to the concatenation of languages. The main result of this paper is that if we start with the basis of this free monoid together with the languages for all , then the resulting family of languages is a code. So we find a free monoid which properly contains the free monoid of all strongly bi-singular languages.
包含所有强双奇异语言和非本原词的自由一元群
设,其中为本原词的i次的集合。如果语言中最小长度的单词既不是该语言中任何其他单词的前缀也不是后缀,则该语言被称为强双单数。强双奇异语言相对于语言的连接形成了一个自由的单似群。本文的主要结果是,如果我们从这个自由单群的基出发,并结合所有的语言,那么得到的语言族就是一个代码。因此我们找到了一个自由模群,它恰当地包含了所有强双奇异语言的自由模群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信