A Novel Five-Step Data Mining Algorithm

Wang Yiwen
{"title":"A Novel Five-Step Data Mining Algorithm","authors":"Wang Yiwen","doi":"10.14257/IJDTA.2017.10.1.11","DOIUrl":null,"url":null,"abstract":"Based on the traditional data mining algorithm, a novel data mining algorithm is proposed. This algorithm consists of 5 steps: the first step, set the tree set; the second step, set the window third, subtree contribution; decision tree construction; the fourth step test, positive and negative examples set; the fifth step, expand the achievements window. The experimental study on open source data sets. The results showed that the five step proposed data mining method, not only can build a more concise decision tree, data mining and the accuracy is also higher than the traditional decision tree method.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"26 1","pages":"119-126"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Based on the traditional data mining algorithm, a novel data mining algorithm is proposed. This algorithm consists of 5 steps: the first step, set the tree set; the second step, set the window third, subtree contribution; decision tree construction; the fourth step test, positive and negative examples set; the fifth step, expand the achievements window. The experimental study on open source data sets. The results showed that the five step proposed data mining method, not only can build a more concise decision tree, data mining and the accuracy is also higher than the traditional decision tree method.
一种新的五步数据挖掘算法
在传统数据挖掘算法的基础上,提出了一种新的数据挖掘算法。该算法包括5步:第一步,设置树集;第二步,设置窗口第三步,子树贡献;决策树构造;第四步测试,正反例设置;第五步,展开成就窗口。开源数据集的实验研究。结果表明,提出的五步数据挖掘方法,不仅可以构建更加简洁的决策树,而且数据挖掘的准确率也高于传统的决策树方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信