{"title":"Optimal Borel measure-valued controls to the viscous Cahn--Hilliard--Oberbeck--Boussinesq phase-field system on two-dimensional bounded domains","authors":"Gilbert Peralta","doi":"10.1051/cocv/2023025","DOIUrl":null,"url":null,"abstract":"We consider an optimal control problem for the two-dimensional viscous Cahn--Hilliard--Oberbeck--Boussinesq system with controls that take values in the space of regular Borel measures. The state equation models the interaction between two incompressible non-isothermal viscous fluids. Local distributed controls with constraints are applied in either of the equation governing the dynamics for the concentration, mean velocity, and temperature. Necessary and sufficient conditions characterizing local optimality in terms of the Lagrangian will be demonstrated. These conditions will be obtained through regularity results for the associated adjoint system, a priori estimates for the solutions of the linearized system in a weaker norm compared to that of the state space, and the Lebesgue decomposition of Borel measures.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"52 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an optimal control problem for the two-dimensional viscous Cahn--Hilliard--Oberbeck--Boussinesq system with controls that take values in the space of regular Borel measures. The state equation models the interaction between two incompressible non-isothermal viscous fluids. Local distributed controls with constraints are applied in either of the equation governing the dynamics for the concentration, mean velocity, and temperature. Necessary and sufficient conditions characterizing local optimality in terms of the Lagrangian will be demonstrated. These conditions will be obtained through regularity results for the associated adjoint system, a priori estimates for the solutions of the linearized system in a weaker norm compared to that of the state space, and the Lebesgue decomposition of Borel measures.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.