Splitting formulas for the local real Gromov–Witten invariants

IF 0.6 3区 数学 Q3 MATHEMATICS
Penka V. Georgieva, Eleny-Nicoleta Ionel
{"title":"Splitting formulas for the local real Gromov–Witten invariants","authors":"Penka V. Georgieva, Eleny-Nicoleta Ionel","doi":"10.4310/jsg.2022.v20.n3.a2","DOIUrl":null,"url":null,"abstract":"Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"87 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.
局部实数Gromov-Witten不变量的分裂公式
受3-fold的Gopakumar-Vafa猜想的实版本的启发,作者在[GI]中引入了局部实Gromov-Witten不变量的概念。本文致力于证明这些不变量在目标退化下的分裂公式。在[GI]中使用它来证明不变量产生二维Klein TQFT,并证明实Gopakumar-Vafa猜想的局部版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信