Distributed source coding in dense sensor networks

A. Kashyap, L. A. Lastras-Montaño, Cathy H. Xia, Zhen Liu
{"title":"Distributed source coding in dense sensor networks","authors":"A. Kashyap, L. A. Lastras-Montaño, Cathy H. Xia, Zhen Liu","doi":"10.1109/DCC.2005.33","DOIUrl":null,"url":null,"abstract":"We study the problem of the reconstruction of a Gaussian field defined in [0,1] using N sensors deployed at regular intervals. The goal is to quantify the total data rate required for the reconstruction of the field with a given mean square distortion. We consider a class of two-stage mechanisms which (a) send information to allow the reconstruction of the sensor's samples within sufficient accuracy, and then (b) use these reconstructions to estimate the entire field. To implement the first stage, the heavy correlation between the sensor samples suggests the use of distributed coding schemes to reduce the total rate. Our main contribution is to demonstrate the existence of a distributed block coding scheme that achieves, for a given fidelity criterion for the sensor's measurements, a total information rate that is within a constant, independent of N, of the minimum information rate required by an encoder that has access to all the sensor measurements simultaneously. The constant in general depends on the autocorrelation function of the field and the desired distortion criterion for the sensor samples.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"152 1","pages":"13-22"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We study the problem of the reconstruction of a Gaussian field defined in [0,1] using N sensors deployed at regular intervals. The goal is to quantify the total data rate required for the reconstruction of the field with a given mean square distortion. We consider a class of two-stage mechanisms which (a) send information to allow the reconstruction of the sensor's samples within sufficient accuracy, and then (b) use these reconstructions to estimate the entire field. To implement the first stage, the heavy correlation between the sensor samples suggests the use of distributed coding schemes to reduce the total rate. Our main contribution is to demonstrate the existence of a distributed block coding scheme that achieves, for a given fidelity criterion for the sensor's measurements, a total information rate that is within a constant, independent of N, of the minimum information rate required by an encoder that has access to all the sensor measurements simultaneously. The constant in general depends on the autocorrelation function of the field and the desired distortion criterion for the sensor samples.
密集传感器网络中的分布式源编码
我们研究了在[0,1]中定义的高斯场的重建问题,使用N个按规则间隔部署的传感器。目标是量化具有给定均方失真的场重建所需的总数据速率。我们考虑了一类两阶段机制,它们(a)发送信息以允许在足够的精度内重建传感器的样本,然后(b)使用这些重建来估计整个领域。为了实现第一阶段,传感器样本之间的高度相关性建议使用分布式编码方案来降低总速率。我们的主要贡献是证明了分布式分组编码方案的存在性,对于传感器测量的给定保真度标准,总信息率在一个常数内,独立于N,具有同时访问所有传感器测量的编码器所需的最小信息率。该常数通常取决于场的自相关函数和传感器样本所需的畸变判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信