When the Few Outweigh the Many: Illicit Content Recognition with Few-Shot Learning

Giuseppe Cascavilla, Gemma Catolino, M. Conti, D. Mellios, D. Tamburri
{"title":"When the Few Outweigh the Many: Illicit Content Recognition with Few-Shot Learning","authors":"Giuseppe Cascavilla, Gemma Catolino, M. Conti, D. Mellios, D. Tamburri","doi":"10.5220/0012049400003555","DOIUrl":null,"url":null,"abstract":"The anonymity and untraceability benefits of the Dark web account for the exponentially-increased potential of its popularity while creating a suitable womb for many illicit activities, to date. Hence, in collaboration with cybersecurity and law enforcement agencies, research has provided approaches for recognizing and classifying illicit activities with most exploiting textual dark web markets' content recognition; few such approaches use images that originated from dark web content. This paper investigates this alternative technique for recognizing illegal activities from images. In particular, we investigate label-agnostic learning techniques like One-Shot and Few-Shot learning featuring the use Siamese neural networks, a state-of-the-art approach in the field. Our solution manages to handle small-scale datasets with promising accuracy. In particular, Siamese neural networks reach 90.9% on 20-Shot experiments over a 10-class dataset; this leads us to conclude that such models are a promising and cheaper alternative to the definition of automated law-enforcing machinery over the dark web.","PeriodicalId":74779,"journal":{"name":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0012049400003555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The anonymity and untraceability benefits of the Dark web account for the exponentially-increased potential of its popularity while creating a suitable womb for many illicit activities, to date. Hence, in collaboration with cybersecurity and law enforcement agencies, research has provided approaches for recognizing and classifying illicit activities with most exploiting textual dark web markets' content recognition; few such approaches use images that originated from dark web content. This paper investigates this alternative technique for recognizing illegal activities from images. In particular, we investigate label-agnostic learning techniques like One-Shot and Few-Shot learning featuring the use Siamese neural networks, a state-of-the-art approach in the field. Our solution manages to handle small-scale datasets with promising accuracy. In particular, Siamese neural networks reach 90.9% on 20-Shot experiments over a 10-class dataset; this leads us to conclude that such models are a promising and cheaper alternative to the definition of automated law-enforcing machinery over the dark web.
当少大于多:非法内容识别与少数镜头学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信