Multi-view Subspace Clustering

Hongchang Gao, F. Nie, Xuelong Li, Heng Huang
{"title":"Multi-view Subspace Clustering","authors":"Hongchang Gao, F. Nie, Xuelong Li, Heng Huang","doi":"10.1109/ICCV.2015.482","DOIUrl":null,"url":null,"abstract":"For many computer vision applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is to find such underlying subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. The proposed method performs clustering on the subspace representation of each view simultaneously. Meanwhile, we propose to use a common cluster structure to guarantee the consistence among different views. In addition, an efficient algorithm is proposed to solve the problem. Experiments on four benchmark data sets have been performed to validate our proposed method. The promising results demonstrate the effectiveness of our method.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"10 1","pages":"4238-4246"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"361","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 361

Abstract

For many computer vision applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is to find such underlying subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. The proposed method performs clustering on the subspace representation of each view simultaneously. Meanwhile, we propose to use a common cluster structure to guarantee the consistence among different views. In addition, an efficient algorithm is proposed to solve the problem. Experiments on four benchmark data sets have been performed to validate our proposed method. The promising results demonstrate the effectiveness of our method.
多视图子空间聚类
对于许多计算机视觉应用,数据集分布在一定的低维子空间上。子空间聚类就是找到这样的底层子空间,并对数据点进行正确聚类。本文提出了一种新的多视图子空间聚类方法。该方法同时对每个视图的子空间表示进行聚类。同时,我们提出使用一个通用的聚类结构来保证不同视图之间的一致性。此外,还提出了一种有效的算法来解决这一问题。在四个基准数据集上进行了实验,验证了我们提出的方法。结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信