M. N. Abdullah, Y. B. Wah, Y. Zakaria, A. Majeed, O. S. Huat
{"title":"Discovering potential blood-based cytokine biomarkers for Alzheimer’s disease using Firth Logistic Regression","authors":"M. N. Abdullah, Y. B. Wah, Y. Zakaria, A. Majeed, O. S. Huat","doi":"10.2427/13173","DOIUrl":null,"url":null,"abstract":"\nBackground: Alzheimer’s disease (AD) is a neurodegenerative disorder where patients suffer from memory loss, cognitive impairment and progressive disability. Individual blood biomarkers have not been successful in defining the disease pathology, progression and diagnosis of AD. There is a need to identify multiplex panels of blood biomarkers for early diagnosis of AD with high sensitivity and specificity. This study focused on identification of cytokine biomarkers. The maximum likelihood estimates of the ordinary logistic regression model cannot be obtained when there is complete separation and the alternative is Firth logistic regression which uses a penalised Maximum Likelihood in parameter estimation. \nMethods: This paper reports a Firth logistic regression application in finding potential blood-based cytokine biomarkers for Alzheimer’s disease in a matched case control study. We used a principle component analysis to discriminate the correlated, completely separated covariates. \nResults: The Firth logistic regression results showed that nine individual biomarkers IL-1β, IL-6, IL-12, IFN-γ, IL-10, IL-13, IP-10, MCP-1 and MIP-1α had a significant relationshipwith elevated risk for AD as compared to the healthy control (HC). Principal component analysis with varimax rotation for the nine biomarkers revealed four factors (total variance explained=85.5%). The main principal component biomarkers were IL-1β, IL-6, IL-13 and MCP-1 (total variance explained=62.3%). Firth’s logistic regression model with the first principal component had accuracy of 78.2% with sensitivity and specificity of 71.8% and 75% respectively. \nConclusion: Firth’s logistic regression is a useful technique in identification of significant biomarkers when there is an issue of data separation. \n","PeriodicalId":45811,"journal":{"name":"Epidemiology Biostatistics and Public Health","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology Biostatistics and Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2427/13173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder where patients suffer from memory loss, cognitive impairment and progressive disability. Individual blood biomarkers have not been successful in defining the disease pathology, progression and diagnosis of AD. There is a need to identify multiplex panels of blood biomarkers for early diagnosis of AD with high sensitivity and specificity. This study focused on identification of cytokine biomarkers. The maximum likelihood estimates of the ordinary logistic regression model cannot be obtained when there is complete separation and the alternative is Firth logistic regression which uses a penalised Maximum Likelihood in parameter estimation.
Methods: This paper reports a Firth logistic regression application in finding potential blood-based cytokine biomarkers for Alzheimer’s disease in a matched case control study. We used a principle component analysis to discriminate the correlated, completely separated covariates.
Results: The Firth logistic regression results showed that nine individual biomarkers IL-1β, IL-6, IL-12, IFN-γ, IL-10, IL-13, IP-10, MCP-1 and MIP-1α had a significant relationshipwith elevated risk for AD as compared to the healthy control (HC). Principal component analysis with varimax rotation for the nine biomarkers revealed four factors (total variance explained=85.5%). The main principal component biomarkers were IL-1β, IL-6, IL-13 and MCP-1 (total variance explained=62.3%). Firth’s logistic regression model with the first principal component had accuracy of 78.2% with sensitivity and specificity of 71.8% and 75% respectively.
Conclusion: Firth’s logistic regression is a useful technique in identification of significant biomarkers when there is an issue of data separation.
期刊介绍:
Epidemiology, Biostatistics, and Public Health (EBPH) is a multidisciplinary journal that has two broad aims: -To support the international public health community with publications on health service research, health care management, health policy, and health economics. -To strengthen the evidences on effective preventive interventions. -To advance public health methods, including biostatistics and epidemiology. EBPH welcomes submissions on all public health issues (including topics like eHealth, big data, personalized prevention, epidemiology and risk factors of chronic and infectious diseases); on basic and applied research in epidemiology; and in biostatistics methodology. Primary studies, systematic reviews, and meta-analyses are all welcome, as are research protocols for observational and experimental studies. EBPH aims to be a cross-discipline, international forum for scientific integration and evidence-based policymaking, combining the methodological aspects of epidemiology, biostatistics, and public health research with their practical applications.