Random Polynomials in Legendre Symbol Sequences

Katalin Gyarmati, Károly Müllner
{"title":"Random Polynomials in Legendre Symbol Sequences","authors":"Katalin Gyarmati, Károly Müllner","doi":"10.2478/udt-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract It is important in cryptographic applications that the “key” used should be generated from a random seed. Thus, if the Legendre symbol sequence generated by a polynomial (as proposed by Hoffstein and Lieman) is used, that is { (f(1)p),(f(2)p),(f(3)p),⋯,(f(p)p) }, \\left\\{ {\\left( {{{f\\left( 1 \\right)} \\over p}} \\right),\\left( {{{f\\left( 2 \\right)} \\over p}} \\right),\\left( {{{f\\left( 3 \\right)} \\over p}} \\right), \\cdots ,\\left( {{{f\\left( p \\right)} \\over p}} \\right)} \\right\\}, then it is important to choose the polynomial f “almost” at random. Goubin, Mauduit, and Sárközy presented some not very restrictive conditions on the polynomial f, but these conditions may not be satisfied if we choose a “truly” random polynomial. However, how can it be guaranteed that the pseudorandom measures of the sequence should be small for almost \"random\" polynomials? These semirandom polynomials will be constructed with as few modifications as necessary from a truly random polynomial.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"19 1","pages":"83 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is important in cryptographic applications that the “key” used should be generated from a random seed. Thus, if the Legendre symbol sequence generated by a polynomial (as proposed by Hoffstein and Lieman) is used, that is { (f(1)p),(f(2)p),(f(3)p),⋯,(f(p)p) }, \left\{ {\left( {{{f\left( 1 \right)} \over p}} \right),\left( {{{f\left( 2 \right)} \over p}} \right),\left( {{{f\left( 3 \right)} \over p}} \right), \cdots ,\left( {{{f\left( p \right)} \over p}} \right)} \right\}, then it is important to choose the polynomial f “almost” at random. Goubin, Mauduit, and Sárközy presented some not very restrictive conditions on the polynomial f, but these conditions may not be satisfied if we choose a “truly” random polynomial. However, how can it be guaranteed that the pseudorandom measures of the sequence should be small for almost "random" polynomials? These semirandom polynomials will be constructed with as few modifications as necessary from a truly random polynomial.
勒让德符号序列中的随机多项式
在密码学应用中,使用的“密钥”应该从随机种子生成,这一点很重要。因此,如果使用由多项式(由Hoffstein和Lieman提出)生成的Legendre符号序列,即{(f(1)p),(f(2)p),(f(3)p),⋯⋯(f(p)p)}, \左\{{\左({{f\左(1 \右)}\ / p} \右),\左({{f\左(2 \右)}\ / p}} \右),\左({{f\左(3 \右)}\ / p}} \右),\ cdots,\左({{{f\左(p \右)}\ / p}} \右,那么选择多项式f“几乎”随机是很重要的。Goubin, Mauduit和Sárközy提出了多项式f的一些不太严格的条件,但如果我们选择一个“真正的”随机多项式,这些条件可能不满足。然而,如何保证序列的伪随机度量对于几乎是“随机”的多项式来说应该是小的呢?这些半随机多项式将根据真正的随机多项式进行尽可能少的修改来构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信