Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Gliomas (HGGs)
O. Sager, F. Dinçoğlan, S. Demiral, H. Gamsız, B. Uysal, F. Ozcan, O. Çolak, B. Dirican, M. Beyzadeoğlu
{"title":"Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Gliomas (HGGs)","authors":"O. Sager, F. Dinçoğlan, S. Demiral, H. Gamsız, B. Uysal, F. Ozcan, O. Çolak, B. Dirican, M. Beyzadeoğlu","doi":"10.1155/2019/4282754","DOIUrl":null,"url":null,"abstract":"Aim and Background. Inoperable high-grade gliomas (HGGs) comprise a specific group of brain tumors portending a very poor prognosis. In the absence of surgical management, radiation therapy (RT) offers the primary local treatment modality for inoperable HGGs. Optimal target definition for radiation treatment planning (RTP) of HGGs is a difficult task given the diffusely infiltrative nature of the disease. In this context, detailed multimodality imaging information may add to the accuracy of target definition in HGGs. We evaluated the impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) definition for RTP of inoperable HGGs in this study. Materials and Methods. Twenty-five inoperable patients with a clinical diagnosis of HGG were included in the study. GTV definition was based on Computed Tomography- (CT-) simulation images only or both CT-simulation and MR images, and a comparative assessment was performed to investigate the incorporation of MRI into RTP of HGGs. Results. Median volume of GTV acquired by using CT-simulation images only and by use of CT and MR images was 65.3 (39.6-94.3) cc and 76.1 (46.8-108.9) cc, respectively. Incorporation of MRI into GTV definition has resulted in a median increase of 12.61% (6%-19%) in the volume of GTV defined by using the CT-simulation images only, which was statistically significant (p < 0.05). Conclusion. Incorporation of MRI into RTP of inoperable HGGs may improve GTV definition and may have implications for dose escalation/intensification strategies despite the need for further supporting evidence.","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"8 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2019/4282754","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 34
Abstract
Aim and Background. Inoperable high-grade gliomas (HGGs) comprise a specific group of brain tumors portending a very poor prognosis. In the absence of surgical management, radiation therapy (RT) offers the primary local treatment modality for inoperable HGGs. Optimal target definition for radiation treatment planning (RTP) of HGGs is a difficult task given the diffusely infiltrative nature of the disease. In this context, detailed multimodality imaging information may add to the accuracy of target definition in HGGs. We evaluated the impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) definition for RTP of inoperable HGGs in this study. Materials and Methods. Twenty-five inoperable patients with a clinical diagnosis of HGG were included in the study. GTV definition was based on Computed Tomography- (CT-) simulation images only or both CT-simulation and MR images, and a comparative assessment was performed to investigate the incorporation of MRI into RTP of HGGs. Results. Median volume of GTV acquired by using CT-simulation images only and by use of CT and MR images was 65.3 (39.6-94.3) cc and 76.1 (46.8-108.9) cc, respectively. Incorporation of MRI into GTV definition has resulted in a median increase of 12.61% (6%-19%) in the volume of GTV defined by using the CT-simulation images only, which was statistically significant (p < 0.05). Conclusion. Incorporation of MRI into RTP of inoperable HGGs may improve GTV definition and may have implications for dose escalation/intensification strategies despite the need for further supporting evidence.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach