{"title":"Fragments of Existential Second-Order Logic without 0-1 Laws","authors":"J. L. Bars","doi":"10.1109/LICS.1998.705685","DOIUrl":null,"url":null,"abstract":"We prove that there is a Monadic /spl Sigma//sub 1//sup 1/ (Minimal Scott without equality) sentence without an asymptotic probability. Our result entails that the 0-1 law fails for the logics /spl Sigma//sub 1//sup 1/(FO/sup 2/) and /spl Sigma//sub 1//sup 1/ (Minimal Godel without equality). Therefore we achieve the classification of first-order prefix classes with or without equality. According to the existence of the 0-1 law for the corresponding /spl Sigma//sub 1//sup 1/ fragment. In addition, our counterexample can be viewed as a single explanation of the failure of the 0-1 law of all the fragments of existential second-order logic for which the failure is already known.","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"9 1","pages":"525-536"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1998.705685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We prove that there is a Monadic /spl Sigma//sub 1//sup 1/ (Minimal Scott without equality) sentence without an asymptotic probability. Our result entails that the 0-1 law fails for the logics /spl Sigma//sub 1//sup 1/(FO/sup 2/) and /spl Sigma//sub 1//sup 1/ (Minimal Godel without equality). Therefore we achieve the classification of first-order prefix classes with or without equality. According to the existence of the 0-1 law for the corresponding /spl Sigma//sub 1//sup 1/ fragment. In addition, our counterexample can be viewed as a single explanation of the failure of the 0-1 law of all the fragments of existential second-order logic for which the failure is already known.