Fragments of Existential Second-Order Logic without 0-1 Laws

J. L. Bars
{"title":"Fragments of Existential Second-Order Logic without 0-1 Laws","authors":"J. L. Bars","doi":"10.1109/LICS.1998.705685","DOIUrl":null,"url":null,"abstract":"We prove that there is a Monadic /spl Sigma//sub 1//sup 1/ (Minimal Scott without equality) sentence without an asymptotic probability. Our result entails that the 0-1 law fails for the logics /spl Sigma//sub 1//sup 1/(FO/sup 2/) and /spl Sigma//sub 1//sup 1/ (Minimal Godel without equality). Therefore we achieve the classification of first-order prefix classes with or without equality. According to the existence of the 0-1 law for the corresponding /spl Sigma//sub 1//sup 1/ fragment. In addition, our counterexample can be viewed as a single explanation of the failure of the 0-1 law of all the fragments of existential second-order logic for which the failure is already known.","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"9 1","pages":"525-536"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1998.705685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We prove that there is a Monadic /spl Sigma//sub 1//sup 1/ (Minimal Scott without equality) sentence without an asymptotic probability. Our result entails that the 0-1 law fails for the logics /spl Sigma//sub 1//sup 1/(FO/sup 2/) and /spl Sigma//sub 1//sup 1/ (Minimal Godel without equality). Therefore we achieve the classification of first-order prefix classes with or without equality. According to the existence of the 0-1 law for the corresponding /spl Sigma//sub 1//sup 1/ fragment. In addition, our counterexample can be viewed as a single explanation of the failure of the 0-1 law of all the fragments of existential second-order logic for which the failure is already known.
无0-1律的存在二阶逻辑的片段
我们证明了存在一个无渐近概率的Monadic /spl Sigma//sub 1//sup 1/ (Minimal Scott without等式)句子。我们的结果表明,对于逻辑/spl Sigma//sub 1//sup 1/(FO/sup 2/)和/spl Sigma//sub 1//sup 1/(不相等的最小哥德尔),0-1定律失效。从而实现了一阶前缀类有无相等的分类。根据0-1律的存在性得到相应的/spl Sigma//sub 1//sup 1/片段。此外,我们的反例可以被视为0-1定律失效的唯一解释,所有存在的二阶逻辑片段的失效是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信