{"title":"Reduced order model for an electro-hydraulic valve of a gas turbine engine's controller","authors":"W. Elmayyah, M. Samy","doi":"10.5937/fme2302169e","DOIUrl":null,"url":null,"abstract":"Gas turbine engines (GTE) are widely used in military and industrial applications. Accurate modeling is mandatory to advance GTE control. The present article investigates, experimentally and theoretically, a detailed dynamic model of an electro-hydraulic system that controls a variable geometry inlet guide vanes (VIGV) of turboshaft GTE. A parametric study for the computationally expensive and time-consuming model has been conducted considering the forces affecting the valve's spool and its relatively short settling time. A reduced mathematical model has been developed. The prediction results of the reduced and full-detailed models have been compared with the experimental results. The reduced model has decreased calculation time by 45% to 50 % while keeping the RMSE of the model within 1-2 % away from the actual system's experimental results for the complete operating range. An improvement allows future studies to integrate the whole subsystems of the GTE in a single computationally affordable model.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2302169e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gas turbine engines (GTE) are widely used in military and industrial applications. Accurate modeling is mandatory to advance GTE control. The present article investigates, experimentally and theoretically, a detailed dynamic model of an electro-hydraulic system that controls a variable geometry inlet guide vanes (VIGV) of turboshaft GTE. A parametric study for the computationally expensive and time-consuming model has been conducted considering the forces affecting the valve's spool and its relatively short settling time. A reduced mathematical model has been developed. The prediction results of the reduced and full-detailed models have been compared with the experimental results. The reduced model has decreased calculation time by 45% to 50 % while keeping the RMSE of the model within 1-2 % away from the actual system's experimental results for the complete operating range. An improvement allows future studies to integrate the whole subsystems of the GTE in a single computationally affordable model.