Investigation of computational cost model of MLP parallel batch training algorithm

V. Turchenko, L. Grandinetti
{"title":"Investigation of computational cost model of MLP parallel batch training algorithm","authors":"V. Turchenko, L. Grandinetti","doi":"10.1109/ISIEA.2009.5356307","DOIUrl":null,"url":null,"abstract":"The development of a parallel batch back propagation training algorithm of a multilayer perceptron and its computational cost model are presented in this paper. The computational cost model of the parallel algorithm is developed using Bulk Synchronous Parallelism approach. The concrete parameters of the computational cost model are obtained. The developed computational cost model is used for theoretical prediction of a parallelization efficiency of the algorithm. The predicted and real parallelization efficiencies are compared for different parallelization scenarios on two parallel high performance computers.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"54 1","pages":"990-995"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The development of a parallel batch back propagation training algorithm of a multilayer perceptron and its computational cost model are presented in this paper. The computational cost model of the parallel algorithm is developed using Bulk Synchronous Parallelism approach. The concrete parameters of the computational cost model are obtained. The developed computational cost model is used for theoretical prediction of a parallelization efficiency of the algorithm. The predicted and real parallelization efficiencies are compared for different parallelization scenarios on two parallel high performance computers.
MLP并行批处理训练算法的计算代价模型研究
本文提出了一种多层感知器并行批量反向传播训练算法及其计算代价模型。采用批量同步并行的方法建立了并行算法的计算代价模型。得到了计算成本模型的具体参数。利用所建立的计算代价模型对算法的并行化效率进行了理论预测。在两台高性能并行计算机上,比较了不同并行化方案下的预测和实际并行化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信