Geology: Modular Georecommendation in Gossip-Based Social Networks

J. Carretero, Florin Isaila, Anne-Marie Kermarrec, François Taïani, Juan M. Tirado
{"title":"Geology: Modular Georecommendation in Gossip-Based Social Networks","authors":"J. Carretero, Florin Isaila, Anne-Marie Kermarrec, François Taïani, Juan M. Tirado","doi":"10.1109/ICDCS.2012.36","DOIUrl":null,"url":null,"abstract":"Geolocated social networks, combining traditional social networking features with geolocation information, have grown tremendously over the last few years. Yet, very few works have looked at implementing geolocated social networks in a fully distributed manner, a promising avenue to handle the growing scalability challenges of these systems. In this paper, we focus on georecommendation, and show that existing decentralized recommendation mechanisms perform in fact poorly on geodata. We propose a set of novel gossip-based mechanisms to address this problem, in a modular similarity framework called GEOLOGY. The resulting platform is lightweight, efficient, and scalable, and we demonstrate its advantages in terms of recommendation quality and communication overhead on a real dataset of 15,694 users from Foursquare, a leading geolocated social network.","PeriodicalId":6300,"journal":{"name":"2012 IEEE 32nd International Conference on Distributed Computing Systems","volume":"115 1","pages":"637-646"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 32nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Geolocated social networks, combining traditional social networking features with geolocation information, have grown tremendously over the last few years. Yet, very few works have looked at implementing geolocated social networks in a fully distributed manner, a promising avenue to handle the growing scalability challenges of these systems. In this paper, we focus on georecommendation, and show that existing decentralized recommendation mechanisms perform in fact poorly on geodata. We propose a set of novel gossip-based mechanisms to address this problem, in a modular similarity framework called GEOLOGY. The resulting platform is lightweight, efficient, and scalable, and we demonstrate its advantages in terms of recommendation quality and communication overhead on a real dataset of 15,694 users from Foursquare, a leading geolocated social network.
地质学:基于八卦的社交网络中的模块化地理推荐
地理定位社交网络将传统的社交网络功能与地理位置信息相结合,在过去几年中得到了极大的发展。然而,很少有作品着眼于以完全分布式的方式实现地理定位的社交网络,这是处理这些系统日益增长的可扩展性挑战的有希望的途径。在本文中,我们关注地理推荐,并表明现有的分散推荐机制在地理数据上的表现实际上很差。我们提出了一套新颖的基于八卦的机制来解决这个问题,在一个称为地质学的模块化相似性框架中。由此产生的平台是轻量级的、高效的、可扩展的,我们在来自Foursquare(一个领先的地理定位社交网络)的15694个用户的真实数据集上展示了它在推荐质量和通信开销方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信