Localized solar power prediction based on weather data from local history and global forecasts

C. Poolla, A. Ishihara
{"title":"Localized solar power prediction based on weather data from local history and global forecasts","authors":"C. Poolla, A. Ishihara","doi":"10.1109/PVSC.2018.8548173","DOIUrl":null,"url":null,"abstract":"With the recent interest in net-zero sustainability for commercial buildings, integration of photovoltaic (PV) assets becomes even more important. This integration remains a challenge due to high solar variability and uncertainty in the prediction of PV output. Most existing methods predict PV output using either local power/weather history or global weather forecasts, thereby ignoring either the impending global phenomena or the relevant local characteristics, respectively. This work proposes to leverage weather data from both local weather history and global forecasts based on time series modeling with exogenous inputs. The proposed model results in eighteen hour ahead forecasts with a mean accuracy of ≈ 80 % and uses data from the National Ocean and Atmospheric Administration’s (NOAA) High-Resolution Rapid Refresh (HRRR) model.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"25 1","pages":"2341-2345"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

With the recent interest in net-zero sustainability for commercial buildings, integration of photovoltaic (PV) assets becomes even more important. This integration remains a challenge due to high solar variability and uncertainty in the prediction of PV output. Most existing methods predict PV output using either local power/weather history or global weather forecasts, thereby ignoring either the impending global phenomena or the relevant local characteristics, respectively. This work proposes to leverage weather data from both local weather history and global forecasts based on time series modeling with exogenous inputs. The proposed model results in eighteen hour ahead forecasts with a mean accuracy of ≈ 80 % and uses data from the National Ocean and Atmospheric Administration’s (NOAA) High-Resolution Rapid Refresh (HRRR) model.
基于当地历史和全球预报的天气数据的局部太阳能预测
随着最近对商业建筑零净可持续性的兴趣,光伏(PV)资产的整合变得更加重要。由于太阳的高度可变性和光伏输出预测的不确定性,这种整合仍然是一个挑战。大多数现有方法要么使用当地电力/天气历史,要么使用全球天气预报来预测光伏发电量,从而分别忽略了即将发生的全球现象或相关的当地特征。这项工作提出利用当地天气历史和基于外生输入的时间序列建模的全球预报的天气数据。该模型采用美国国家海洋和大气管理局(NOAA)的高分辨率快速刷新(HRRR)模型,可提前18小时进行预测,平均精度约为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信