Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models

Rohan Basu Roy, Tirthak Patel, V. Gadepally, Devesh Tiwari
{"title":"Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models","authors":"Rohan Basu Roy, Tirthak Patel, V. Gadepally, Devesh Tiwari","doi":"10.1145/3453483.3454109","DOIUrl":null,"url":null,"abstract":"As parallel applications become more complex, auto-tuning becomes more desirable, challenging, and time-consuming. We propose, Bliss, a novel solution for auto-tuning parallel applications without requiring apriori information about applications, domain-specific knowledge, or instrumentation. Bliss demonstrates how to leverage a pool of Bayesian Optimization models to find the near-optimal parameter setting 1.64× faster than the state-of-the-art approaches.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

As parallel applications become more complex, auto-tuning becomes more desirable, challenging, and time-consuming. We propose, Bliss, a novel solution for auto-tuning parallel applications without requiring apriori information about applications, domain-specific knowledge, or instrumentation. Bliss demonstrates how to leverage a pool of Bayesian Optimization models to find the near-optimal parameter setting 1.64× faster than the state-of-the-art approaches.
Bliss:使用各种轻量级学习模型池自动调整复杂的应用程序
随着并行应用程序变得越来越复杂,自动调优变得更加需要、更具挑战性和耗时。我们提出Bliss,一种新的解决方案,用于自动调优并行应用程序,而不需要有关应用程序的先验信息、特定于领域的知识或工具。Bliss演示了如何利用贝叶斯优化模型池来找到接近最优的参数设置,比最先进的方法快1.64倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信