Galois theories of q-difference equations: comparison theorems

Q4 Mathematics
L. D. Vizio, C. Hardouin
{"title":"Galois theories of q-difference equations: comparison theorems","authors":"L. D. Vizio, C. Hardouin","doi":"10.5802/CML.66","DOIUrl":null,"url":null,"abstract":"We establish some comparison results among the different parameterized Galois theories for $q$-difference equations, completing the work by CHatzidakis, Hardouin and Singer, that addresses the problem in the case without parameters. Our main result is the link between the abstract parameterized Galois theories, that give information on the differential properties of abstract solutions of $q$-difference equations, and the properties of meromorphic solutions of such equations. Notice that a linear $q$-difference equation with meromorphic coefficients always admits a basis of meromorphic solutions, as proven by Praagman.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/CML.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

We establish some comparison results among the different parameterized Galois theories for $q$-difference equations, completing the work by CHatzidakis, Hardouin and Singer, that addresses the problem in the case without parameters. Our main result is the link between the abstract parameterized Galois theories, that give information on the differential properties of abstract solutions of $q$-difference equations, and the properties of meromorphic solutions of such equations. Notice that a linear $q$-difference equation with meromorphic coefficients always admits a basis of meromorphic solutions, as proven by Praagman.
g -差分方程的伽罗瓦理论:比较定理
我们建立了$q$差分方程的不同参数化伽罗瓦理论之间的一些比较结果,完成了CHatzidakis, Hardouin和Singer解决无参数情况下问题的工作。我们的主要成果是抽象参数化伽罗瓦理论之间的联系,它给出了$q$-差分方程抽象解的微分性质的信息,以及这类方程的亚纯解的性质。注意,一个具有亚纯系数的线性q -差分方程总是有亚纯解的基,这是由Praagman证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Confluentes Mathematici
Confluentes Mathematici Mathematics-Mathematics (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
5
期刊介绍: Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信