METHOD FOR ESTIMATING THE TIME OF USEFUL USE OF EQUIPMENT BASED ON NEURAL NETWORKS

M. Dli, A. Puchkov, E. Lobaneva
{"title":"METHOD FOR ESTIMATING THE TIME OF USEFUL USE OF EQUIPMENT BASED ON NEURAL NETWORKS","authors":"M. Dli, A. Puchkov, E. Lobaneva","doi":"10.36807/1998-9849-2021-59-85-107-112","DOIUrl":null,"url":null,"abstract":"A method for predicting the useful time of equipment based on the processing of diagnostic data using parallel recurrent and convolutional neural networks is proposed. Images for the convolutional network are formed on the basis of the wavelet transform of diagnostic data. Neural networks operate in a multivalued classification mode, which is used in the method to refine the prediction of the useful time of equipment based on the recursive least squares method. The results of a model experiment performed using a program developed in the MatLAB environment that implements the proposed method are presented.","PeriodicalId":9467,"journal":{"name":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36807/1998-9849-2021-59-85-107-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for predicting the useful time of equipment based on the processing of diagnostic data using parallel recurrent and convolutional neural networks is proposed. Images for the convolutional network are formed on the basis of the wavelet transform of diagnostic data. Neural networks operate in a multivalued classification mode, which is used in the method to refine the prediction of the useful time of equipment based on the recursive least squares method. The results of a model experiment performed using a program developed in the MatLAB environment that implements the proposed method are presented.
基于神经网络的设备有效使用时间估计方法
提出了一种基于并行循环神经网络和卷积神经网络对诊断数据进行处理的设备使用时间预测方法。卷积网络的图像是在诊断数据的小波变换基础上形成的。神经网络工作在多值分类模式下,该方法采用递推最小二乘法对设备使用时间的预测进行细化。文中给出了在MatLAB环境下开发的实现该方法的程序进行模型实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信