{"title":"Simultaneous Saccharification and Fermentation of Corn Husk by Co-Culture Strategy","authors":"Shivani Sharma, V. Sharma, Arindam Kuila","doi":"10.4172/2157-7463.1000360","DOIUrl":null,"url":null,"abstract":"Lignocellulosic biofuel production mainly carried out by two ways: simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF). In the present study, simultaneous saccharification and fermentation (SSF) was carried out using microwave assisted thermochemically pretreated (0.5 M NaOH for 20 minutes at 120°C in preheated oven) corn husk. Using co-cultures of Saccharomyces cerevisiae and Fusarium oxysporum, SSF process was optimized. Maximum ethanol production (6.24%, v/v) was observed after 24 h of incubation. Further for enhanced ethanol production, effect of different surfactant was carried out on SSF using co-culture strategy. It was found that addition of Tween 60 enhanced the ethanol production upto 6.38% (v/v). Further for addition enhancement of ethanol production, different co-culture strategy was adopted. It was found that maximum ethanol production (6.58% v/v) was obtained when ethanol fermentation was carried out by Fusarium oxysporum followed by Saccharomyces cerevisiae.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"53 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Lignocellulosic biofuel production mainly carried out by two ways: simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF). In the present study, simultaneous saccharification and fermentation (SSF) was carried out using microwave assisted thermochemically pretreated (0.5 M NaOH for 20 minutes at 120°C in preheated oven) corn husk. Using co-cultures of Saccharomyces cerevisiae and Fusarium oxysporum, SSF process was optimized. Maximum ethanol production (6.24%, v/v) was observed after 24 h of incubation. Further for enhanced ethanol production, effect of different surfactant was carried out on SSF using co-culture strategy. It was found that addition of Tween 60 enhanced the ethanol production upto 6.38% (v/v). Further for addition enhancement of ethanol production, different co-culture strategy was adopted. It was found that maximum ethanol production (6.58% v/v) was obtained when ethanol fermentation was carried out by Fusarium oxysporum followed by Saccharomyces cerevisiae.