Manhattan Junction Catalogue for Spatial Reasoning of Indoor Scenes

S. Ramalingam, Jaishanker K. Pillai, Arpit Jain, Yuichi Taguchi
{"title":"Manhattan Junction Catalogue for Spatial Reasoning of Indoor Scenes","authors":"S. Ramalingam, Jaishanker K. Pillai, Arpit Jain, Yuichi Taguchi","doi":"10.1109/CVPR.2013.394","DOIUrl":null,"url":null,"abstract":"Junctions are strong cues for understanding the geometry of a scene. In this paper, we consider the problem of detecting junctions and using them for recovering the spatial layout of an indoor scene. Junction detection has always been challenging due to missing and spurious lines. We work in a constrained Manhattan world setting where the junctions are formed by only line segments along the three principal orthogonal directions. Junctions can be classified into several categories based on the number and orientations of the incident line segments. We provide a simple and efficient voting scheme to detect and classify these junctions in real images. Indoor scenes are typically modeled as cuboids and we formulate the problem of the cuboid layout estimation as an inference problem in a conditional random field. Our formulation allows the incorporation of junction features and the training is done using structured prediction techniques. We outperform other single view geometry estimation methods on standard datasets.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"35 1","pages":"3065-3072"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Junctions are strong cues for understanding the geometry of a scene. In this paper, we consider the problem of detecting junctions and using them for recovering the spatial layout of an indoor scene. Junction detection has always been challenging due to missing and spurious lines. We work in a constrained Manhattan world setting where the junctions are formed by only line segments along the three principal orthogonal directions. Junctions can be classified into several categories based on the number and orientations of the incident line segments. We provide a simple and efficient voting scheme to detect and classify these junctions in real images. Indoor scenes are typically modeled as cuboids and we formulate the problem of the cuboid layout estimation as an inference problem in a conditional random field. Our formulation allows the incorporation of junction features and the training is done using structured prediction techniques. We outperform other single view geometry estimation methods on standard datasets.
室内场景空间推理曼哈顿枢纽目录
连接点是理解场景几何的有力线索。在本文中,我们考虑的问题是检测节点,并利用它们来恢复室内场景的空间布局。由于缺失线和杂散线的存在,连接点检测一直是一个挑战。我们在一个受约束的曼哈顿世界环境中工作,在那里,连接处仅由沿着三个主要正交方向的线段组成。根据入射线段的数量和方向,结点可以分为几类。我们提供了一种简单有效的投票方案来检测和分类真实图像中的这些连接。室内场景通常被建模为长方体,我们将长方体布局估计问题表述为条件随机场中的推理问题。我们的公式允许结合连接特征,并且使用结构化预测技术完成训练。我们在标准数据集上优于其他单视图几何估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信