Performance Comparison of FOD based Edge Detector and Traditional Edge Detectors on Fish Image Edge Detection

Jayashree Deka, S. Laskar
{"title":"Performance Comparison of FOD based Edge Detector and Traditional Edge Detectors on Fish Image Edge Detection","authors":"Jayashree Deka, S. Laskar","doi":"10.1109/ComPE49325.2020.9200022","DOIUrl":null,"url":null,"abstract":"Detection of edge in image is a fundamental requirement involved in computer vision and image processing applications. In this paper, the performance of traditional edge detectors is compared with Grunwald-Letnikov(G-L) based Fractional Order Derivative (FOD) based edge detector. The performance is measured for both types of detectors under noise free and noisy conditions on fish images. Image quality assessment (IQA) parameters Mean Square Error (MSE), Peak Signal-to-Noise-Ratio (PSNR), Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) are used for quantitative comparison of the edge detection. From the experimental results, it is observed that FOD based edge detector shows better results than the traditional edge detectors under noisy conditions either in terms of quality or quantity.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"468 1","pages":"485-490"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of edge in image is a fundamental requirement involved in computer vision and image processing applications. In this paper, the performance of traditional edge detectors is compared with Grunwald-Letnikov(G-L) based Fractional Order Derivative (FOD) based edge detector. The performance is measured for both types of detectors under noise free and noisy conditions on fish images. Image quality assessment (IQA) parameters Mean Square Error (MSE), Peak Signal-to-Noise-Ratio (PSNR), Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) are used for quantitative comparison of the edge detection. From the experimental results, it is observed that FOD based edge detector shows better results than the traditional edge detectors under noisy conditions either in terms of quality or quantity.
基于FOD的边缘检测器与传统边缘检测器在鱼类图像边缘检测中的性能比较
图像边缘检测是计算机视觉和图像处理应用的基本要求。本文将传统边缘检测器的性能与基于Grunwald-Letnikov(G-L)的分数阶导数(FOD)边缘检测器进行了比较。测试了两种探测器在无噪声和有噪声条件下对鱼类图像的性能。采用图像质量评价(IQA)参数均方误差(MSE)、峰值信噪比(PSNR)、结构相似指数(SSIM)和特征相似指数(FSIM)对边缘检测进行定量比较。实验结果表明,在噪声条件下,基于FOD的边缘检测器在质量和数量上都优于传统的边缘检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信