A structural view of the dissociation of Escherichia coli tryptophanase.

IF 2.2 4区 生物学
K. Green, N. Qasim, Garik Gdaelvsky, Anna Kogan, Y. Goldgur, A. Parola, O. Lotan, O. Almog
{"title":"A structural view of the dissociation of Escherichia coli tryptophanase.","authors":"K. Green, N. Qasim, Garik Gdaelvsky, Anna Kogan, Y. Goldgur, A. Parola, O. Lotan, O. Almog","doi":"10.1107/S139900471501799X","DOIUrl":null,"url":null,"abstract":"Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S139900471501799X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.
大肠杆菌色氨酸酶解离的结构观点。
色氨酸酶(Trpase)是一种依赖于吡哆醛5'-磷酸(PLP)的同四聚体酶,它催化l -色氨酸的降解。Trpase还以其冷稳定性而闻名,这是一种与四聚体解离有关的低温(2°C)下可逆的活性丧失。大肠杆菌Trpase解离成二聚体,而普通变形杆菌Trpase解离成单体。因此,该酶是研究蛋白质-蛋白质相互作用和蛋白质四级结构的合适模型。本研究的目的是了解在分离模式的差异在大肠杆菌和寻常假单胞杆菌之间。特别地,研究了沿同四聚体Trpase分子轴突变对其解离的影响。为了回答这个问题,研究人员创造了两组大肠杆菌酶的突变体,以类似于P. vulgaris Trpase的氨基酸序列。在一组中,位于分子轴R(也称为非催化轴)的残基15和59发生突变。第二组包括298位突变,位于分子轴Q(也称为催化轴)。替换R轴上的氨基酸残基会导致四聚体解离成单体,类似于P. vulgaris Trpase,而替换Q轴上的氨基酸残基只会解离成二聚体。大肠杆菌Trpase V59M突变体的晶体结构也以载脂蛋白形式进行了测定,发现其与野生型相似。这项研究表明,在大肠杆菌Trpase中,沿着R轴的疏水相互作用更强地将两个单体结合在一起,防止二聚体解离成单体。沿Q轴的298位突变为带电残基,产生不易解离的四聚体。因此,结果表明大肠杆菌Trpase解离成二聚体沿着分子Q轴发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
13.60%
发文量
0
审稿时长
3 months
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信