CLINK

Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong
{"title":"CLINK","authors":"Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong","doi":"10.1145/3218603.3218637","DOIUrl":null,"url":null,"abstract":"Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.
发出叮当声
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信