{"title":"Characterizing Social TV Activity Around Televised Events: A Joint Topic Model Approach","authors":"Yuheng Hu","doi":"10.1287/IJOC.2020.1038","DOIUrl":null,"url":null,"abstract":"Viewers often use social media platforms like Twitter to express their views about televised programs and events like the presidential debate, the Oscars, and the State of the Union speech. Although this promises tremendous opportunities to analyze the feedback on a program or an event using viewer-generated content on social media, there are significant technical challenges to doing so. Specifically, given a televised event and related tweets about this event, we need methods to effectively align these tweets and the corresponding event. In turn, this will raise many questions, such as how to segment the event and how to classify a tweet based on whether it is generally about the entire event or specifically about one particular event segment. In this paper, we propose and develop a novel joint Bayesian model that aligns an event and its related tweets based on the influence of the event’s topics. Our model allows the automated event segmentation and tweet classification concurrently. We present an efficient inference method for this model and a comprehensive evaluation of its effectiveness compared with the state-of-the-art methods. We find that the topics, segments, and alignment provided by our model are significantly more accurate and robust.","PeriodicalId":13620,"journal":{"name":"Informs Journal on Computing","volume":"28 1","pages":"1320-1338"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informs Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1287/IJOC.2020.1038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Viewers often use social media platforms like Twitter to express their views about televised programs and events like the presidential debate, the Oscars, and the State of the Union speech. Although this promises tremendous opportunities to analyze the feedback on a program or an event using viewer-generated content on social media, there are significant technical challenges to doing so. Specifically, given a televised event and related tweets about this event, we need methods to effectively align these tweets and the corresponding event. In turn, this will raise many questions, such as how to segment the event and how to classify a tweet based on whether it is generally about the entire event or specifically about one particular event segment. In this paper, we propose and develop a novel joint Bayesian model that aligns an event and its related tweets based on the influence of the event’s topics. Our model allows the automated event segmentation and tweet classification concurrently. We present an efficient inference method for this model and a comprehensive evaluation of its effectiveness compared with the state-of-the-art methods. We find that the topics, segments, and alignment provided by our model are significantly more accurate and robust.
期刊介绍:
The INFORMS Journal on Computing (JOC) is a quarterly that publishes papers in the intersection of operations research (OR) and computer science (CS). Most papers contain original research, but we also welcome special papers in a variety of forms, including Feature Articles on timely topics, Expository Reviews making a comprehensive survey and evaluation of a subject area, and State-of-the-Art Reviews that collect and integrate recent streams of research.