On one extremal property of Korovkin's means

Q4 Mathematics
V. Babenko, S. Pichugov
{"title":"On one extremal property of Korovkin's means","authors":"V. Babenko, S. Pichugov","doi":"10.15421/247702","DOIUrl":null,"url":null,"abstract":"We point out that$$\\inf\\limits_{L \\in L_n} \\sup\\limits_{\\substack{f \\in C_{2\\pi}\\\\f \\ne const}} \\frac{\\max \\| f(x) - L(f, x) \\|}{\\omega^*_2(f, \\pi/n + 1)} = \\frac{1}{2}$$where $C_{2\\pi}$ is the space of periodic continuous functions on real domain, $L_n$ is the set of linear operators that map $C_{2\\pi}$ to the set of trigonometric polynomials of order no greater than $n$ ($n = 0,1,\\ldots$), $\\omega_2(f, t) = \\sup\\limits_{x, |h| \\leqslant t} |f(x-h) - 2f(x) + f(x+h)|$, $\\omega^*_2(f, t)$ is the concave hull of the function $\\omega_2(f, t)$. In this equality, the infimum is attained for Korovkin's means.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We point out that$$\inf\limits_{L \in L_n} \sup\limits_{\substack{f \in C_{2\pi}\\f \ne const}} \frac{\max \| f(x) - L(f, x) \|}{\omega^*_2(f, \pi/n + 1)} = \frac{1}{2}$$where $C_{2\pi}$ is the space of periodic continuous functions on real domain, $L_n$ is the set of linear operators that map $C_{2\pi}$ to the set of trigonometric polynomials of order no greater than $n$ ($n = 0,1,\ldots$), $\omega_2(f, t) = \sup\limits_{x, |h| \leqslant t} |f(x-h) - 2f(x) + f(x+h)|$, $\omega^*_2(f, t)$ is the concave hull of the function $\omega_2(f, t)$. In this equality, the infimum is attained for Korovkin's means.
关于科洛夫金均值的一个极值性质
指出$$\inf\limits_{L \in L_n} \sup\limits_{\substack{f \in C_{2\pi}\\f \ne const}} \frac{\max \| f(x) - L(f, x) \|}{\omega^*_2(f, \pi/n + 1)} = \frac{1}{2}$$,其中$C_{2\pi}$是实数域上周期连续函数的空间,$L_n$是将$C_{2\pi}$映射到阶数不大于$n$ ($n = 0,1,\ldots$)的三角多项式集合的线性算子的集合,$\omega_2(f, t) = \sup\limits_{x, |h| \leqslant t} |f(x-h) - 2f(x) + f(x+h)|$, $\omega^*_2(f, t)$是函数$\omega_2(f, t)$的凹壳。在这个等式中,科罗夫金的平均数达到了极限值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信