Alexander Vladimirovich Misonizhnik, A. A. Babushkin, S. Morozov, Yu.O. Kostyukov, D. Mordvinov, D. Koznov
{"title":"Automated testing of LLVM programs with complex input data structures","authors":"Alexander Vladimirovich Misonizhnik, A. A. Babushkin, S. Morozov, Yu.O. Kostyukov, D. Mordvinov, D. Koznov","doi":"10.15514/ispras-2022-34(4)-4","DOIUrl":null,"url":null,"abstract":"Symbolic execution is a widely used approach for automatic regression test generation and bug and vulnerability finding. The main goal of this paper is to present a practical symbolic execution-based approach for LLVM programs with complex input data structures. The approach is based on the well-known idea of lazy initialization, which frees the user from providing constraints on input data structures manually. Thus, it provides us with a fully automatic symbolic execution of even complex program. Two lazy initialization improvements are proposed for segmented memory models: one based on timestamps and one based on type information. The approach is implemented in the KLEE symbolic virtual machine for the LLVM platform and tested on real C data structures — lists, binomial heaps, AVL trees, red-black trees, binary trees, and tries.","PeriodicalId":33459,"journal":{"name":"Trudy Instituta sistemnogo programmirovaniia RAN","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Instituta sistemnogo programmirovaniia RAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15514/ispras-2022-34(4)-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Symbolic execution is a widely used approach for automatic regression test generation and bug and vulnerability finding. The main goal of this paper is to present a practical symbolic execution-based approach for LLVM programs with complex input data structures. The approach is based on the well-known idea of lazy initialization, which frees the user from providing constraints on input data structures manually. Thus, it provides us with a fully automatic symbolic execution of even complex program. Two lazy initialization improvements are proposed for segmented memory models: one based on timestamps and one based on type information. The approach is implemented in the KLEE symbolic virtual machine for the LLVM platform and tested on real C data structures — lists, binomial heaps, AVL trees, red-black trees, binary trees, and tries.