Localization and delocalization of eigenmodes of Harmonic oscillators

V'ictor Arnaiz, F. Macià
{"title":"Localization and delocalization of eigenmodes of Harmonic oscillators","authors":"V'ictor Arnaiz, F. Macià","doi":"10.1090/proc/15767","DOIUrl":null,"url":null,"abstract":"We characterize quantum limits and semi-classical measures corresponding to sequences of eigenfunctions for systems of coupled quantum harmonic oscillators with arbitrary frequencies. The structure of the set of semi-classical measures turns out to depend strongly on the arithmetic relations between frequencies of each decoupled oscillator. In particular, we show that as soon as these frequencies are not rational multiples of a fixed fundamental frequency, the set of semi-classical measures is not convex and therefore, infinitely many measures that are invariant under the classical harmonic oscillator are not semi-classical measures.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We characterize quantum limits and semi-classical measures corresponding to sequences of eigenfunctions for systems of coupled quantum harmonic oscillators with arbitrary frequencies. The structure of the set of semi-classical measures turns out to depend strongly on the arithmetic relations between frequencies of each decoupled oscillator. In particular, we show that as soon as these frequencies are not rational multiples of a fixed fundamental frequency, the set of semi-classical measures is not convex and therefore, infinitely many measures that are invariant under the classical harmonic oscillator are not semi-classical measures.
谐振子本征模的局域化与离域化
我们刻画了任意频率耦合量子谐振子系统的量子极限和对应于本征函数序列的半经典测度。半经典测度集的结构很大程度上依赖于每个解耦振荡器频率之间的算术关系。特别地,我们证明了只要这些频率不是固定基频的有理倍数,半经典测度集就不是凸的,因此,在经典谐振子下不变的无限多测度就不是半经典测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信