Simple Iterative Algorithms for Approximate And Bounded Parameter Orthonormality

S. Douglas, Yu Hong
{"title":"Simple Iterative Algorithms for Approximate And Bounded Parameter Orthonormality","authors":"S. Douglas, Yu Hong","doi":"10.1109/IEEECONF44664.2019.9049063","DOIUrl":null,"url":null,"abstract":"Orthonormality constraints, in which parameter sets are constrained to be perpendicular to each other and of unit length, are important for many estimation, detection, and classification tasks. Such constraints are not appropriate in all practical scenarios, however. In this paper, we describe simple adaptive algorithms that adjust a matrix so that its rows are close to orthonormality after adaptation, as specified by user-selectable bounds on pairwise inner products and squared vector lengths. The algorithms have rapid convergence. Applications to independent component analysis and deep learning system training show the benefits of the approach.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"13 1","pages":"2101-2105"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Orthonormality constraints, in which parameter sets are constrained to be perpendicular to each other and of unit length, are important for many estimation, detection, and classification tasks. Such constraints are not appropriate in all practical scenarios, however. In this paper, we describe simple adaptive algorithms that adjust a matrix so that its rows are close to orthonormality after adaptation, as specified by user-selectable bounds on pairwise inner products and squared vector lengths. The algorithms have rapid convergence. Applications to independent component analysis and deep learning system training show the benefits of the approach.
近似和有界参数正交性的简单迭代算法
正交性约束,其中参数集被约束为彼此垂直和单位长度,对于许多估计,检测和分类任务很重要。然而,这种约束并不适用于所有的实际场景。在本文中,我们描述了简单的自适应算法,该算法调整矩阵,使其行在自适应后接近正交态,由成对内积和平方向量长度的用户可选择界限指定。该算法收敛速度快。应用于独立成分分析和深度学习系统训练显示了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信