The Effects of Ag Nanoislands on the Volatile Threshold-Switching Behaviors of Au/Ag/HfO2/Ag Nanoislands/Au Devices

4区 材料科学 Q2 Materials Science
Fanlin Long, Yichuan Zhang, Zhaozhu Qu, Peiwen Lv, Baolin Zhang
{"title":"The Effects of Ag Nanoislands on the Volatile Threshold-Switching Behaviors of Au/Ag/HfO2/Ag Nanoislands/Au Devices","authors":"Fanlin Long, Yichuan Zhang, Zhaozhu Qu, Peiwen Lv, Baolin Zhang","doi":"10.1155/2023/6675683","DOIUrl":null,"url":null,"abstract":"Volatile threshold-switching (TS) devices have been used as selectors and to simulate neurons in neural networks. It is necessary to find new ways to improve their performance. The randomness of conductive filament (CF) growth and the endurance of the devices are urgent issues at present. Here, we explored embedded Ag nanoislands (NIs) in HfO2-based TS devices to limit the position of the CF and facilitate its growth at the same time. The Au/Ag(2 nm)/HfO2(4 nm)/Ag NIs/Au volatile TS devices exhibited forming-free characteristics with improved endurance compared with the devices without Ag NIs, which was ascribed to the enhanced localization of the electrical field and increased oxygen vacancies in HfO2 induced by the Ag NIs. A mechanism was proposed to explain the volatile TS behaviors of the devices. The Ag NIs and the thickness of the HfO2 layers played key roles in whether the devices required forming. This work shows that the use of metal NIs is an effective and convenient way to improve the performance of TS devices.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/6675683","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile threshold-switching (TS) devices have been used as selectors and to simulate neurons in neural networks. It is necessary to find new ways to improve their performance. The randomness of conductive filament (CF) growth and the endurance of the devices are urgent issues at present. Here, we explored embedded Ag nanoislands (NIs) in HfO2-based TS devices to limit the position of the CF and facilitate its growth at the same time. The Au/Ag(2 nm)/HfO2(4 nm)/Ag NIs/Au volatile TS devices exhibited forming-free characteristics with improved endurance compared with the devices without Ag NIs, which was ascribed to the enhanced localization of the electrical field and increased oxygen vacancies in HfO2 induced by the Ag NIs. A mechanism was proposed to explain the volatile TS behaviors of the devices. The Ag NIs and the thickness of the HfO2 layers played key roles in whether the devices required forming. This work shows that the use of metal NIs is an effective and convenient way to improve the performance of TS devices.
Ag纳米岛对Au/Ag/HfO2/Ag纳米岛/Au器件挥发性阈值开关行为的影响
挥发性阈值开关(TS)装置已被用作选择器和模拟神经网络中的神经元。有必要找到新的方法来提高他们的表现。导电丝生长的随机性和器件的耐久性是目前迫切需要解决的问题。在这里,我们探索了在hfo2基TS器件中嵌入银纳米岛(NIs),以限制CF的位置,同时促进其生长。Au/Ag(2 nm)/HfO2(4 nm)/Ag NIs/Au挥发性TS器件与不含Ag NIs的器件相比,表现出无形成特性,且耐久性提高,这是由于Ag NIs增强了电场的局域化,增加了HfO2中的氧空位。提出了一种解释器件挥发性TS行为的机制。Ag - NIs和HfO2层的厚度是决定器件是否需要成形的关键因素。这项工作表明,使用金属NIs是提高TS器件性能的一种有效和方便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanomaterials
Journal of Nanomaterials 工程技术-材料科学:综合
CiteScore
6.10
自引率
0.00%
发文量
577
审稿时长
2.3 months
期刊介绍: The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信