Using time-dependent neural networks for EEG classification.

E. Haselsteiner, G. Pfurtscheller
{"title":"Using time-dependent neural networks for EEG classification.","authors":"E. Haselsteiner, G. Pfurtscheller","doi":"10.1109/86.895948","DOIUrl":null,"url":null,"abstract":"This paper compares two different topologies of neural networks. They are used to classify single trial electroencephalograph (EEG) data from a brain-computer interface (BCI). A short introduction to time series classification is given, and the used classifiers are described. Standard multilayer perceptrons (MLPs) are used as a standard method for classification. They are compared to finite impulse response (FIR) MLPs, which use FIR filters instead of static weights to allow temporal processing inside the classifier. A theoretical comparison of the two architectures is presented. The results of a BCI experiment with three different subjects are given and discussed. These results demonstrate the higher performance of the FIR MLP compared with the standard MLP.","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"703 1","pages":"457-63"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.895948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

Abstract

This paper compares two different topologies of neural networks. They are used to classify single trial electroencephalograph (EEG) data from a brain-computer interface (BCI). A short introduction to time series classification is given, and the used classifiers are described. Standard multilayer perceptrons (MLPs) are used as a standard method for classification. They are compared to finite impulse response (FIR) MLPs, which use FIR filters instead of static weights to allow temporal processing inside the classifier. A theoretical comparison of the two architectures is presented. The results of a BCI experiment with three different subjects are given and discussed. These results demonstrate the higher performance of the FIR MLP compared with the standard MLP.
基于时变神经网络的脑电分类。
本文比较了两种不同的神经网络拓扑结构。它们被用来对来自脑机接口(BCI)的单次试验脑电图(EEG)数据进行分类。简要介绍了时间序列分类,并对常用的分类器进行了描述。标准多层感知器(mlp)是一种标准的分类方法。将它们与有限脉冲响应(FIR) mlp进行比较,后者使用FIR滤波器而不是静态权重来允许在分类器内部进行时间处理。对这两种体系结构进行了理论比较。本文给出并讨论了三种不同主体的脑机接口实验结果。这些结果表明,与标准MLP相比,FIR MLP具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信