On the coverings of Hantzsche-Wendt manifold

G. Chelnokov, A. Mednykh
{"title":"On the coverings of Hantzsche-Wendt manifold","authors":"G. Chelnokov, A. Mednykh","doi":"10.2748/tmj.20210308","DOIUrl":null,"url":null,"abstract":"There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\\mathcal{G}_1,\\dots,\\mathcal{G}_6$ and four are non-orientable $\\mathcal{B}_1,\\dots,\\mathcal{B}_4$. In the present paper we investigate the manifold $\\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\\mathcal{G}_6) = \\mathbb{Z}^2_4$. \nThe aim of this paper is to describe all types of $n$-fold coverings over $\\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\\pi_1(\\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2748/tmj.20210308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\mathcal{G}_1,\dots,\mathcal{G}_6$ and four are non-orientable $\mathcal{B}_1,\dots,\mathcal{B}_4$. In the present paper we investigate the manifold $\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\mathcal{G}_6) = \mathbb{Z}^2_4$. The aim of this paper is to describe all types of $n$-fold coverings over $\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\pi_1(\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.
汉文歧管的封面
只有10种欧几里得形式,即平坦封闭的三维流形:6种是可定向的$\mathcal{G}_1,\dots,\mathcal{G}_6$ 4种是不可定向的$\mathcal{B}_1,\dots,\mathcal{B}_4$。在本文中,我们研究了流形$\mathcal{G}_6$,也称为Hantzsche-Wendt流形;这是唯一的具有有限第一同调群$H_1(\mathcal{G}_6) = \mathbb{Z}^2_4$的欧几里得$3$ -形式。本文的目的是描述$\mathcal{G}_{6}$上所有类型的$n$ -fold覆盖,并计算每种类型的非等效覆盖的数量。我们将基本群$\pi_1(\mathcal{G}_{6})$中的子群划分到同构。给定索引$n$,我们计算了每个同构类型的子群的个数和子群的共轭类的个数,并给出了上述序列的Dirichlet生成级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信