{"title":"Study of giant dipole resonances for neodymium isotopes with an exciton model","authors":"Nabeel F. Lattoofi, A. Alzubadi","doi":"10.1142/s0218301320500846","DOIUrl":null,"url":null,"abstract":"The partial photonuclear [Formula: see text], pn) and [Formula: see text] and the total photonuclear cross-sections (the giant dipole resonance (GDR)) have been investigated theoretically for neodymium isotopes, namely [Formula: see text]Nd, using framework of the EMPIRE 3.2.2 code. The energy, width and cross-section parameters of the GDR used in our calculations have been investigated in this paper depending on the deformation parameters of nuclei. The calculated results have been compared with the experimental data and with those calculated using Lorentzian fitting parameters. Our calculations show a good agreement for all isotopes under study and give better results than the results calculated with Lorentzian parameters. Furthermore, the neutron number dependence of the total and partial photonuclear cross-sections has also been discussed. The results appear that the EMPIRE code used is a perfect tool for reproducing the splitting in the GDR for deformed [Formula: see text]Nd isotope in two distinct dipole modes which are perfectly consistent with the experimental results. It has also been shown that the present parameters are suitable parameters for reproducing the GDR for spherical, or nearly spherical, and the deformed ([Formula: see text]Nd) neodymium isotopes. The parameters have been indicating the small deformation in [Formula: see text]Nd, which cannot be shown by the Lorentzian fitting parameters.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"8 1","pages":"2050084"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218301320500846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The partial photonuclear [Formula: see text], pn) and [Formula: see text] and the total photonuclear cross-sections (the giant dipole resonance (GDR)) have been investigated theoretically for neodymium isotopes, namely [Formula: see text]Nd, using framework of the EMPIRE 3.2.2 code. The energy, width and cross-section parameters of the GDR used in our calculations have been investigated in this paper depending on the deformation parameters of nuclei. The calculated results have been compared with the experimental data and with those calculated using Lorentzian fitting parameters. Our calculations show a good agreement for all isotopes under study and give better results than the results calculated with Lorentzian parameters. Furthermore, the neutron number dependence of the total and partial photonuclear cross-sections has also been discussed. The results appear that the EMPIRE code used is a perfect tool for reproducing the splitting in the GDR for deformed [Formula: see text]Nd isotope in two distinct dipole modes which are perfectly consistent with the experimental results. It has also been shown that the present parameters are suitable parameters for reproducing the GDR for spherical, or nearly spherical, and the deformed ([Formula: see text]Nd) neodymium isotopes. The parameters have been indicating the small deformation in [Formula: see text]Nd, which cannot be shown by the Lorentzian fitting parameters.