{"title":"Second order directional shape derivatives of integrals on submanifolds","authors":"A. Schiela, Julian Ortiz","doi":"10.3934/MCRF.2021017","DOIUrl":null,"url":null,"abstract":"We compute first and second order shape sensitivities of integrals on smooth submanifolds using a variant of shape differentiation. The result is a quadratic form in terms of one perturbation vector field that yields a second order quadratic model of the perturbed functional. We discuss the structure of this derivative, derive domain expressions and Hadamard forms in a general geometric framework, and give a detailed geometric interpretation of the arising terms.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/MCRF.2021017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We compute first and second order shape sensitivities of integrals on smooth submanifolds using a variant of shape differentiation. The result is a quadratic form in terms of one perturbation vector field that yields a second order quadratic model of the perturbed functional. We discuss the structure of this derivative, derive domain expressions and Hadamard forms in a general geometric framework, and give a detailed geometric interpretation of the arising terms.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.