RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests

R J. Pub Date : 2021-06-15 DOI:10.32614/rj-2022-012
Cansu Alakus, Denis Larocque, A. Labbe
{"title":"RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests","authors":"Cansu Alakus, Denis Larocque, A. Labbe","doi":"10.32614/rj-2022-012","DOIUrl":null,"url":null,"abstract":"Like many predictive models, random forests provide point predictions for new observations. Besides the point prediction, it is important to quantify the uncertainty in the prediction. Prediction intervals provide information about the reliability of the point predictions. We have developed a comprehensive R package, RFpredInterval, that integrates 16 methods to build prediction intervals with random forests and boosted forests. The set of methods implemented in the package includes a new method to build prediction intervals with boosted forests (PIBF) and 15 method variations to produce prediction intervals with random forests, as proposed by Roy and Larocque (2020). We perform an extensive simulation study and apply real data analyses to compare the performance of the proposed method to ten existing methods for building prediction intervals with random forests. The results show that the proposed method is very competitive and, globally, outperforms competing methods.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"37 1","pages":"300-320"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2022-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Like many predictive models, random forests provide point predictions for new observations. Besides the point prediction, it is important to quantify the uncertainty in the prediction. Prediction intervals provide information about the reliability of the point predictions. We have developed a comprehensive R package, RFpredInterval, that integrates 16 methods to build prediction intervals with random forests and boosted forests. The set of methods implemented in the package includes a new method to build prediction intervals with boosted forests (PIBF) and 15 method variations to produce prediction intervals with random forests, as proposed by Roy and Larocque (2020). We perform an extensive simulation study and apply real data analyses to compare the performance of the proposed method to ten existing methods for building prediction intervals with random forests. The results show that the proposed method is very competitive and, globally, outperforms competing methods.
RFpredInterval:一个R包,用于随机森林和提升森林的预测区间
像许多预测模型一样,随机森林为新的观测提供点预测。除了点预测之外,对预测中的不确定性进行量化也很重要。预测区间提供了关于点预测可靠性的信息。我们开发了一个全面的R包RFpredInterval,它集成了16种方法来构建随机森林和增强森林的预测区间。包中实现的一组方法包括Roy和Larocque(2020)提出的一种使用增强森林(PIBF)构建预测区间的新方法和15种使用随机森林生成预测区间的方法变体。我们进行了广泛的模拟研究,并应用实际数据分析来比较所提出的方法与十种现有的随机森林预测区间构建方法的性能。结果表明,该方法具有很强的竞争力,并且在全局范围内优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信