Finitely generated subgroups of free groups as formal languages and their cogrowth

IF 0.1 Q4 MATHEMATICS
A. Darbinyan, R. Grigorchuk, Asif Shaikh
{"title":"Finitely generated subgroups of free groups as formal languages and\n their cogrowth","authors":"A. Darbinyan, R. Grigorchuk, Asif Shaikh","doi":"10.46298/jgcc.2021.13.2.7617","DOIUrl":null,"url":null,"abstract":"For finitely generated subgroups $H$ of a free group $F_m$ of finite rank\n$m$, we study the language $L_H$ of reduced words that represent $H$ which is a\nregular language. Using the (extended) core of Schreier graph of $H$, we\nconstruct the minimal deterministic finite automaton that recognizes $L_H$.\nThen we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and\nfor such groups explicitly construct ergodic automaton that recognizes $L_H$.\nThis construction gives us an efficient way to compute the cogrowth series\n$L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method\nand a comparison is made with the method of calculation of $L_H(z)$ based on\nthe use of Nielsen system of generators of $H$.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"9 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2021.13.2.7617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.
作为形式语言的自由群的有限生成子群及其共生
对于秩$m$的自由群$F_m$的有限生成子群$H$,我们研究了表示$H$的约简词的正则语言$L_H$。利用$H$的Schreier图的(扩展)核,我们构造了识别$L_H$的最小确定性有限自动机。然后我们刻画了$L_H$不可约的fg子群$H$,并为这些子群显式构造了识别$L_H$的遍历自动机。这种构造为计算$H$的协生长级数$L_H(z)$和$L_H$的熵提供了一种有效的方法。实例说明了该方法,并与基于Nielsen $H$生成器的$L_H(z)$计算方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信