Interpretable Approximation of High-Dimensional Data

IF 1.9 Q1 MATHEMATICS, APPLIED
D. Potts, Michael Schmischke
{"title":"Interpretable Approximation of High-Dimensional Data","authors":"D. Potts, Michael Schmischke","doi":"10.1137/21M1407707","DOIUrl":null,"url":null,"abstract":"In this paper we apply the previously introduced approximation method based on the ANOVA (analysis of variance) decomposition and Grouped Transformations to synthetic and real data. The advantage of this method is the interpretability of the approximation, i.e., the ability to rank the importance of the attribute interactions or the variable couplings. Moreover, we are able to generate an attribute ranking to identify unimportant variables and reduce the dimensionality of the problem. We compare the method to other approaches on publicly available benchmark datasets.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"2018 1","pages":"1301-1323"},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21M1407707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we apply the previously introduced approximation method based on the ANOVA (analysis of variance) decomposition and Grouped Transformations to synthetic and real data. The advantage of this method is the interpretability of the approximation, i.e., the ability to rank the importance of the attribute interactions or the variable couplings. Moreover, we are able to generate an attribute ranking to identify unimportant variables and reduce the dimensionality of the problem. We compare the method to other approaches on publicly available benchmark datasets.
高维数据的可解释近似
本文将基于方差分析(ANOVA)分解和分组变换的逼近方法应用于合成数据和实际数据。这种方法的优点是近似的可解释性,即能够对属性相互作用或变量耦合的重要性进行排序。此外,我们能够生成一个属性排序来识别不重要的变量并降低问题的维度。我们将该方法与公开可用的基准数据集上的其他方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信