Sparse Matrix Selection for CSR-Based SpMV Using Deep Learning

Ping Guo, Changjiang Zhang
{"title":"Sparse Matrix Selection for CSR-Based SpMV Using Deep Learning","authors":"Ping Guo, Changjiang Zhang","doi":"10.1109/ICCC47050.2019.9064309","DOIUrl":null,"url":null,"abstract":"CSR (Compressed Sparse Row) is the most popular and widely used sparse matrix representation format for Sparse Matrix-Vector Multiplication (SpMV), which is a key operation in many scientific and engineering applications. However, considering different matrix features and the given GPUs, CSR-based SpMV on some sparse matrices does not always have better performance than that of SpMV based on other sparse matrix formats. In this paper, we explore deep learning techniques and present a methodology to select the proper sparse matrices for CSR-based SpMV on NVIDIA GPUs. To address the challenge of this matrix selection problem, we convert it to a matrix classification problem, then address this classification problem by using the Convolutional Neural Networks (CNN). The effectiveness of our proposed methodology has been demonstrated by our experimental evaluations performed on NVIDIA GPUs.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"89 1","pages":"2097-2101"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

CSR (Compressed Sparse Row) is the most popular and widely used sparse matrix representation format for Sparse Matrix-Vector Multiplication (SpMV), which is a key operation in many scientific and engineering applications. However, considering different matrix features and the given GPUs, CSR-based SpMV on some sparse matrices does not always have better performance than that of SpMV based on other sparse matrix formats. In this paper, we explore deep learning techniques and present a methodology to select the proper sparse matrices for CSR-based SpMV on NVIDIA GPUs. To address the challenge of this matrix selection problem, we convert it to a matrix classification problem, then address this classification problem by using the Convolutional Neural Networks (CNN). The effectiveness of our proposed methodology has been demonstrated by our experimental evaluations performed on NVIDIA GPUs.
基于深度学习的基于csr的SpMV稀疏矩阵选择
压缩稀疏行(Compressed Sparse Row, CSR)是稀疏矩阵-向量乘法(SpMV)中最流行和应用最广泛的稀疏矩阵表示格式,是许多科学和工程应用中的关键运算。然而,考虑到不同的矩阵特征和给定的gpu,基于csr的SpMV在某些稀疏矩阵上的性能并不总是优于基于其他稀疏矩阵格式的SpMV。在本文中,我们探索了深度学习技术,并提出了一种在NVIDIA gpu上为基于csr的SpMV选择适当稀疏矩阵的方法。为了解决这个矩阵选择问题的挑战,我们将其转换为矩阵分类问题,然后使用卷积神经网络(CNN)来解决这个分类问题。我们提出的方法的有效性已经通过我们在NVIDIA gpu上进行的实验评估得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信